175 research outputs found
Photoaging skin therapy with PRP and ADSC: a comparative study
Background: Stem cells from adipose tissue (ADSCs) and platelet-rich plasma (PRP) are innovative modalities that arise due to their regenerative potential. Objective: The aim of this study was to characterize possible histological changes induced by PRP and ADSC therapies in photoaged skin. Methods: A prospective randomized study involving 20 healthy individuals, showing skin aging. They underwent two therapeutic protocols (protocol 1: PRP; protocol 2: ADSCs). Biopsies were obtained before and after treatment (4 months). Results: PRP protocol showed unwanted changes in the reticular dermis, mainly due to the deposition of a horizontal layer of collagen (fibrosis) and elastic fibers tightly linked. Structural analyses revealed infiltration of mononuclear cells and depot of fibrotic material in the reticular dermis. The ADSC protocol leads to neoelastogenesis with increase of tropoelastin and fibrillin. There was an improvement of solar elastosis inducing an increment of macrophage polarization and matrix proteinases. These last effects are probably related to the increase of elastinolysis and the remodeling of the dermis. Conclusions: The PRP promoted an inflammatory process with an increase of reticular dermis thickness with a fibrotic aspect. On the other hand, ADSC therapy is a promising modality with an important antiaging effect on photoaged human skin
Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells
Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies
Osteoblasts and Bone Marrow Mesenchymal Stromal Cells Control Hematopoietic Stem Cell Migration and Proliferation in 3D In Vitro Model
BACKGROUND: Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow-derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. METHODOLOGY/PRINCIPAL FINDINGS: A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34(+) cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34(+) cells was decreased. CONCLUSIONS/SIGNIFICANCE: Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation
Some Like It Fat: Comparative Ultrastructure of the Embryo in Two Demosponges of the Genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean
0000-0002-7993-1523© 2015 Riesgo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Determination of Population Structure of Wheat Core Collection for Association Mapping
The microsatellites, as one of the most robust markers for identification of wheat varieties, were used for assessment of genetic diversity and population structure to promote effective use of genetic resources. In this study, the set of 284 wheat varieties were genotyped using 30 microsatellite markers. The chosen SSR markers were located among almost all linkage groups and covered all three genomes. The genotypes used originate from 24 different breeding centers worldwide and are included in an extensive core collection of the Institute of Field and Vegetable Crops in Novi Sad, Serbia. The total number of detected alleles was 349 at all analyzed loci. The average number of detected allelic variant per locus was 11.5. The mean value of polymorphic information content was 0.68. According to the probability of data obtained by program Structure, the results have shown presence of 6 subpopulations within the studied set of genotypes. The population structure positively correlated to some extent with geographic origin. The available pedigree data were included for additional explanation of population structure. The results of this study should provide valuable information for future association studies using the diverse wheat breeding material
Long-term culture of cholangiocytes from liver fibro-granulomatous lesions
BACKGROUND: Extensive bile duct proliferation is a key feature of the tissue reaction to clinical and experimental forms of liver injury. Experimental infection of mice by Schistosoma mansoni is a well-studied model of liver fibrosis with bile duct hyperplasia. However, the regulatory mechanisms of bile duct changes are not well understood. In this study we report the reproducible isolation of long-term cultures of cholangiocytes from mice livers with schistosomal fibrosis. METHODS: We have isolated a cholangiocyte cell line from Schistosoma-induced liver granulomas using a combination of methods including selective adhesion and isopyknic centrifugation in Percoll. RESULTS: The cell line was characterized by morphological criteria in optical and transmission electron microscopy, ability to form well differentiated ductular structures in collagen gels and by a positive staining for cytokeratin 18 and cytokeratin 19. To our knowledge, this is the first murine cholangiocyte cell line isolated from schistosomal fibrosis reported in the literature. CONCLUSION: After 9 months and 16 passages this diploid cell line maintained differentiated characteristics and a high proliferative capacity. We believe the method described here may be a valuable tool to study bile duct changes during hepatic injury
TGF β1 and PDGF AA override Collagen type I inhibition of proliferation in human liver connective tissue cells
BACKGROUND: A marked expansion of the connective tissue population and an abnormal deposition of extracellular matrix proteins are hallmarks of chronic and acute injuries to liver tissue. Liver connective tissue cells, also called stellate cells, derived from fibrotic liver have been thoroughly characterized and correspond phenotypically to myofibroblasts. They are thought to derive from fat-storing Ito cells in the perisinusoidal space and acquire a contractile phenotype when activated by tissue injury. In the last few years it has become evident that several peptide growth factors such as PDGF AA and TGF-β are involved in the development of fibrosis by modulating myofibroblast proliferation and collagen secretion. The fact that during the development of chronic fibrosis there is concomitant deposition of collagen, a known inhibitory factor, and sustained cell proliferation, raises the possibility that stellate cells from chronic liver fibrosis patients fail to respond to normal physiologic controls. METHODS: In this study we address whether cells from fibrotic liver patients respond to normal controls of proliferation. We compared cell proliferation of primary human liver connective tissue cells (LCTC) from patients with liver fibrosis and skin fibroblasts (SF) in the presence of collagens type I and IV; TGF-β, PDGF AA and combinations of collagen type I and TGF-β or PDGF AA. RESULTS: Our results indicate that despite displaying normal contact and collagen-induced inhibition of proliferation LCTC respond more vigorously to lower concentrations of PDGF AA. In addition, we show that collagen type I synergizes with growth factors to promote mitogenesis of LCTC but not SF. CONCLUSIONS: The synergistic interaction of growth factors and extracellular matrix proteins may underlie the development of chronic liver fibrosis
- …