31 research outputs found

    Methodological needs in the quality and safety characterisation of nanotechnology-based health products: Priorities for method development and standardisation

    Get PDF
    Nanotechnology-based health products are providing innovative solutions in health technologies and the pharmaceutical field, responding to unmet clinical needs. However, suitable standardised methods need to be available for quality and safety assessments of these innovative products prior to their translation into the clinic and for monitoring their performance when manufacturing processes are changed. The question arises which technological solutions are currently available within the scientific community to support the requested characterisation of nanotechnology-based products, and which methodological developments should be prioritized to support product developers in their regulatory assessment. To this end, the work presented here explored the state-of-the-art methods to identify methodological gaps associated with the preclinical characterisation of nanotechnology-based medicinal products and medical devices. The regulatory information needs, as expressed by regulatory authorities, were extracted from the guidance documents released so far for nanotechnology-based health products and mapped against available methods, thus allowing an analysis of methodological gaps and needs. In the first step, only standardised methods were considered, leading to the identification of methodological needs in five areas of characterisation, including: (i) surface properties, (ii) drug loading and release, (iii) kinetic properties in complex biological media, (iv) ADME (absorption, distribution, metabolism and excretion) parameters and (v) interaction with blood and the immune system. In the second step, a detailed gap analysis included analytical approaches in earlier stages of development, and standardised test methods from outside of the nanotechnology field that could address the identified areas of gaps. Based on this analysis, three categories of methodological needs were identified, including (i) method optimisation/adaptation to nanotechnological platforms, (ii) method validation/standardisation and (iii) method development for those areas where no technological solutions currently exist. The results of the analysis presented in this work should raise awareness within the scientific community on existing and emerging methodological needs, setting priorities for the development and standardisation of relevant analytical and toxicological methods allowing the development of a robust testing strategy for nanotechnology-based health products

    Relationship between polarities of antibiotic and polymer matrix on nanoparticle formulations based on aliphatic polyesters

    Get PDF
    In the field of nanomedicine, nanoparticles are developed to target antibiotics to sites of bacterial infection thus enabling adequate drug exposure and decrease development of resistant bacteria. In the present study, we investigated the encapsulation of two antibiotics with different polarity into different PEGylated polymeric nanoparticles based on aliphatic polyesters, to obtain a better understanding of critical factors determining encapsulation and release. The nanoparticles were prepared from diblock copolymers comprising of a poly(ethylene glycol) block attached to an aliphatic polyester block of varying polarity: poly(lactic-co-glycolic acid) (mPEG-PLGA), poly(lactic-co-hydroxymethyl glycolic acid) (mPEG-PLHMGA) and poly(lactic-co-benzyloxymethyl glycolic acid) (mPEG-PLBMGA). Hydrophobic bedaquiline and hydrophilic vancomycin were encapsulated via single and double-emulsion solvent evaporation techniques, respectively. Encapsulation, degradation and release studies at physiological simulating conditions were performed. Drug polarity and preparation techniques influenced encapsulation efficiency into polymer nanoparticles, giving almost complete encapsulation of bedaquiline and approx. 30% for vancomycin independent of the polymer type. The nonpolar bedaquiline showed a predominantly diffusion-controlled release independent of polymer composition. However, polar vancomycin was released by a combination of diffusion and polymer degradation, which was significantly affected by polymer composition, the most hydrophilic polymer displaying the fastest release

    Deriving structural information from robust phase attributes

    No full text

    Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling

    Get PDF
    BackgroundAlginate is an industrially important polysaccharide, currently produced commercially by harvesting of marine brown sea-weeds. The polymer is also synthesized as an exo-polysaccharide by bacteria belonging to the genera Pseudomonas and Azotobacter, and these organisms may represent an alternative alginate source in the future. The current work describes an attempt to rationally develop a biological system tuned for very high levels of alginate production, based on a fundamental understanding of the system through metabolic modeling supported by transcriptomics studies and carefully controlled fermentations.ResultsAlginate biosynthesis in Pseudomonas fluorescens was studied in a genomics perspective, using an alginate over-producing strain carrying a mutation in the anti-sigma factor gene mucA. Cells were cultivated in chemostats under nitrogen limitation on fructose or glycerol as carbon sources, and cell mass, growth rate, sugar uptake, alginate and CO2 production were monitored. In addition a genome scale metabolic model was constructed and samples were collected for transcriptome analyses. The analyses show that polymer production operates in a close to optimal way with respect to stoichiometric utilization of the carbon source and that the cells increase the uptake of carbon source to compensate for the additional needs following from alginate synthesis. The transcriptome studies show that in the presence of the mucA mutation, the alg operon is upregulated together with genes involved in energy generation, genes on both sides of the succinate node of the TCA cycle and genes encoding ribosomal and other translation-related proteins. Strains expressing a functional MucA protein (no alginate production) synthesize cellular biomass in an inefficient way, apparently due to a cycle that involves oxidation of NADPH without ATP production. The results of this study indicate that the most efficient way of using a mucA mutant as a cell factory for alginate production would be to use non-growing conditions and nitrogen deprivation.ConclusionsThe insights gained in this study should be very useful for a future efficient production of microbial alginates

    Investigating alginate production and carbon utilization in Pseudomonas fluorescens SBW25 using mass spectrometry-based metabolic profiling

    No full text
    Metabolic profiling of Pseudomonas fluorescens SBW25 and various mutants derived thereof was performed to explore how the bacterium adapt to changes in carbon source and upon induction of alginate synthesis. The experiments were performed at steady-state conditions in nitrogen-limited chemostats using either fructose or glycerol as carbon source. Carbon source consumption was up-regulated in the alginate producing mutant with inactivated anti-sigma factor MucA. The mucA- mutants (also non-alginate producing mucA- control strains) had a higher dry weight yield on carbon source implying a change in carbon and energy metabolism due to the inactivation of the anti-sigma factor MucA. Both LC–MS/MS and GC–MS methods were used for quantitative metabolic profiling, and major reorganization of primary metabolite pools in both an alginate producing and a carbon source dependent manner was observed. Generally, larger changes were observed among the phosphorylated glycolytic metabolites, the pentose phosphate pathway metabolites and the nucleotide pool than among amino acids and citric acid cycle compounds. The most significant observation at the metabolite level was the significantly reduced energy charge of the mucA- mutants (both alginate producing and non-producing control strains) compared to the wild type strain. This reduction was caused more by a strong increase in the AMP pool than changes in the ATP and ADP pools. The alginate-producing mucA- mutant had a slightly increased GTP pool, while the GDP and GMP pools were strongly increased compared to non-producing mucA- strains and to the wild type. Thus, whilst changes in the adenosine phosphate nucleotide pool are attributed to the mucA inactivation, adjustments in the guanosine phosphate nucleotide pool are consequences of the GTP-dependent alginate production induced by the mucA inactivation. This metabolic profiling study provides new insight into carbon and energy metabolism of the alginate producer P. fluorescens

    In depth characterization of physicochemical critical quality attributes of a clinical drug-dendrimer conjugate

    No full text
    A deep and detailed understanding of drug-dendrimer conjugates key properties is needed to define the critical quality attributes that affect drug product performance. The characterization must be executed both in the formulation media and in biological matrices. This, nevertheless, is challenging on account of a very limited number of suitable, established methods for characterizing the physicochemical properties, stability, and interaction with biological environment of complex drug-dendrimer conjugates. In order to fully characterize AZD0466, a drug-dendrimer conjugate currently under clinical development by AstraZeneca, a collaboration was initiated with the European Nanomedicine Characterisation Laboratory to deploy a state-of-the-art multi-step approach to measure physicochemical properties. An incremental complexity characterization approach was applied to two batches of AZD0466 and the corresponding dendrimer not carrying any drug, SPL-8984. Thus, the aim of this work is to guide in depth characterization efforts in the analysis of drug-dendrimer conjugates. Additionally, it serves to highlight the importance of using the adequate complementary techniques to measure physical and chemical stability in both simple and biological media, to drive a complex drug-dendrimer conjugate product from discovery to clinical development.</p
    corecore