22 research outputs found
Self-Assembly of Supramolecules Consisting of Octyl Gallate Hydrogen Bonded to Polyisoprene-block-poly(vinylpyridine) Diblock Copolymers
Synchrotron radiation was used to investigate the self-assembly in two comb-shaped supramolecules systems consisting of octyl gallate (OG), i.e., 1-octyl-3,4,5-trihydroxybenzoate, hydrogen bonded to the pyridine groups of polyisoprene-block-poly(vinylpyridine) diblock copolymers. In the case of the 1,2-polyisoprene-block-poly(4-vinylpyridine)(OG)x system, self-assembly was only observed for x â„0.5, where x denotes the number of OG molecules per pyridine group. For x = 0.5, 0.75, 1.0, and 1.2 the system self-assembled in the form of hexagonally ordered cylinders of P4VP(OG) throughout the entire temperature range of 25-200 °C investigated. For the 1,4-polyisoprene-block-poly(2-vinylpyridine)(OG)x system, on the other hand, a considerably more complex phase behavior was found, including the formation of cubic, hexagonally ordered cylinders and lamellar morphologies. In this case several order-order transitions were observed as a function of temperature, including a lamellar to lamellar transition involving a collapse of the layer thickness. The absence of hydrogen bonding between the octyl gallate molecules and the pyridine groups at elevated temperatures is argued to be a key factor for many of the phenomena observed.
In-situ SAXS study on the alignment of ordered systems of comb-shaped supramolecules:A shear-induced cylinder-to-cylinder transition
A tooth rheometer, designed to investigate in-situ the influence of large-amplitude oscillatory shear on the macroscopic orientation of complex fluids, is used to study the alignment of two supramolecular systems composed of a polyisoprene-block-poly(2-vinylpyi-idine) block copolymer with octyl gallate (OG) hydrogen bonded to the vinylpyridine block. The molecular ratio x between OG and pyridine groups in these two PI-b-P2VP(OG)(x) systems is 0.50 and 0.75, respectively. In both cases, a hexagonally ordered cylindrical self-assembly was revealed by small-angle X-ray scattering in a broad temperature range. The spacing of the hexagonal structure decreases significantly on heating and reversibly increases on cooling. In in-situ SAXS experiments, performed with the tooth rheometer, a gradual macroscopic alignment of the nanoscale structure is observed on heating for both supramolecular systems. The most striking feature is a shear-induced transition from one hexagonal structure to another, more aligned, hexagonal structure observed for PI-b-P2VP(OG)0.75 in the temperature range 120-140degreesC. The transition is accompanied by an abrupt reduction of the domain spacing and additionally by a decrease of the phase angle measured by the rheometer. In the PI-b-P2V-P(OG)(0.5) system a comparable reduction in the spacing is observed at 90-95degreesC. In this case, it coincides with the most intensive macroscopic alignment of the sample, proceeding in a continuous rather than discontinuous fashion. This behavior is discussed in terms of the breaking of the hydrogen bonds between OG and P2VP being facilitated by shear
Hexagonally Perforated Layer Morphology in PS-b-P4VP(PDP) Supramolecules
Supramolecular complexes of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymers and small molecules such as pentadecylphenol (PDP) have been studied extensively in recent years. In the present study, PS-b-P4VP(PDP) complexes with a minority P4VP(PDP) block are morphologically characterized focusing on the region between the lamellar and cylindrical phase. Dynamic mechanical measurements and small-angle X-ray scattering are used to follow the transitions between the ordered states upon heating/cooling. The self-assembled state at various temperatures is determined by small-angle X-ray scattering and transmission electron microscopy. In contrast to the opposite case of majority P4VP(PDP) blocks, where the transition from lamellar to cylindrical structures frequently occurs via the gyroid morphology, the complexes adopt the hexagonally perforated layered morphology in a broad range of compositions. Although known as a metastable phase in pure diblock copolymers, the hexagonally perforated layered phase appears as an equilibrium phase in PS-b-P4VP(PDP) complexes, being stabilized by the presence of the hydrogen-bonded PDP side chains in the minority component domains
Enantioselective Organocatalytic Enamine CâH Oxidation/Dielsâ Alder Reaction
α,ÎČâunsaturated aldehydes have been traditionally used in LUMO lowering asymmetric aminocatalysis (iminium catalysis), while the use of saturated aldehydes as substrates in this type of catalysis has been elusive, until recently. Herein, we demonstrate that organic, singleâelectron oxidants in the presence of diarylprolinol silylether type catalysts serve as effective tools for the transformation of electron rich enamines to iminium ions which partake in a subsequent DielsâAlder reaction. This enantioselective oneâpot transformation represents the first example of saturated aldehydes being used in domino DielsâAlder reaction processes and demonstrates the power of this protocol for construction of stereoâdefined chiral compounds and building blocks
Lamellar Microdomains of Block-Copolymer-Based Ionic Supramolecules Exhibiting a Hierarchical Self-Assembly
Based on a parent diblock copolymer of poly(styrene)-b-poly(methacrylic acid), PS-b-PMAA, linear-b-amphiphilic comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] are synthesized in which the poly(methacrylate) backbone of the ionic supramolecular AC-block is neutralized by alkyl (Cn; n = 8, 12, and 16) trimethylammonium counterions (i.e., side chains) at various ion (pair) fractions X [i.e., counterion/side-chain grafting density; X = number of alkyl counterions (i.e., side chains) per acidic group of the parent PMAA block] these L-b-AC ionic supramolecules exhibit a spherical-in-lamellar hierarchical self-assembly. For these systems, (1) the effective Flory-Huggins interaction parameter between L- and AC-blocks chi'(Cn/x) was extracted, and (2) analysis of the lamellar microdomains showed that when there is an increase in X, alkyl counterion (i.e., side chain) length l(sc), or both, there is an increase in both the average interfacial area per block junction Sigma and the thickness of the microlayer of the AC-block d(Ac)