584 research outputs found

    Centralized and Distributed Power Allocation for Max-Min Fairness in Cell-Free Massive MIMO

    Get PDF
    Cell-free Massive MIMO systems consist of a large number of geographically distributed access points (APs) that serve users by coherent joint transmission. Downlink power allocation is important in these systems, to determine which APs should transmit to which users and with what power. If the system is implemented correctly, it can deliver a more uniform user performance than conventional cellular networks. To this end, previous works have shown how to perform system-wide max-min fairness power allocation when using maximum ratio precoding. In this paper, we first generalize this method to arbitrary precoding, and then train a neural network to perform approximately the same power allocation but with reduced computational complexity. Finally, we train one neural network per AP to mimic system-wide max-min fairness power allocation, but using only local information. By learning the structure of the local propagation environment, this method outperforms the state-of-the-art distributed power allocation method from the Cell-free Massive MIMO literature

    Scalable cell-free massive MIMO systems with hardware impairments

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the accepted manuscript version of a conference paper which has been published in final form at https://doi.org/10.1109/PIMRC48278.2020.9217151Despite the deleterious effect of hardware impairments (HWIs) on wireless systems, most prior works in cell-free (CF) massive multiple-input-multiple-output (mMIMO) systems have not accounted for their impact. In particular, the effect of phase noise (PN) has not been investigated at all in CF systems. Moreover, there is no work investigating HWIs in scalable CF (SCF) mMIMO systems, encountering the prohibitively demanding fronthaul requirements of large networks with many users. Hence, we derive the uplink spectral efficiency (SE) under HWIs with minimum mean-squared error (MMSE) combining in closed-form by means of the deterministic equivalent (DE) analysis. Notably, previous works, accounted for MMSE decoding, studied the corresponding SE only by means of simulations. Numerical results illustrate the performance loss due to HWIs and result in insightful conclusions

    Approved but non-funded vaccines: Accessing individual protection

    Get PDF
    AbstractFunded immunization programs are best able to achieve high participation rates, optimal protection of the target population, and indirect protection of others. However, in many countries public funding of approved vaccines can be substantially delayed, limited to a portion of the at-risk population or denied altogether. In these situations, unfunded vaccines are often inaccessible to individuals at risk, allowing potentially avoidable morbidity and mortality to continue to occur. We contend that private access to approved but unfunded vaccines should be reconsidered and encouraged, with recognition that individuals have a prerogative to take advantage of a vaccine of potential benefit to them whether it is publicly funded or not. Moreover, numbers of “approved but unfunded” vaccines are likely to grow because governments will not be able to fund all future vaccines of potential benefit to some citizens. New strategies are needed to better use unfunded vaccines even though the net benefits will fall short of those of funded programs.Canada, after recent delays funding several new vaccine programs, has developed means to encourage private vaccine use. Physicians are required to inform relevant patients about risks and benefits of all recommended vaccines, publicly funded or not. Likewise, some provincial public health departments now recommend and promote both funded and unfunded vaccines. Pharmacists are key players in making unfunded vaccines locally available. Professional organizations are contributing to public and provider education about unfunded vaccines (e.g. herpes zoster, not funded in any province). Vaccine companies are gaining expertise with direct-to-consumer advertising. However, major challenges remain, such as making unfunded vaccines more available to low-income families and overcoming public expectations that all vaccines will be provided cost-free, when many other recommended personal preventive measures are user-pay. The greatest need is to change the widespread perception that approved vaccines should be publicly funded or ignored

    An Evaluation of Three TRM Feed-Mixing Wagons

    Get PDF
    Three mixer wagons, three-auger, reel-type auger, and four-auger, were used to evaluate the adequacy of mix of a grower diet. All three mixers were considered in good mechanical condition. The grower diet contained 12.4% rolled corn, 23.7% wet corn gluten feed, 42% soybean hulls, 15.8% grass hay, and 6.19% liquid supplement on an as-is basis. Monensin was added to the diet at 28glton on an as-fed basis. Samples were obtained after 2, 4, 6, and 8 minutes (min) of mixing. Following the 8-min mixing time, the feed was unloaded as a windrow onto a concrete pad. Samples were obtained from the beginning, middle, and end of the windrow. These samples were used for nutrient analysis and ionophore (Monensin) recovery. Dry matter (DM) content and crude protein (CP) showed little variance across treatments. The coefficient of variation (CV) was greater for acid detergent fiber (ADF) levels than for other assayed components. The three-auger mixer produced a ration that was adequately mixed after 8 min of mixing. The reel-type auger required 4 min and the four-auger required only 2 min of mixing based on the observed CV. Monensin recovery gave similar results. The three-auger mixer gave the most accurate Monensin levels as compared to theoretical values. These studies indicate any well-maintained mixer will work well if the timing and sequence of adding ingredients is correct for the type of mixing action

    Cosmological test of the Yilmaz theory of gravity

    Full text link
    We test the Yilmaz theory of gravitation by working out the corresponding Friedmann-type equations generated by assuming the Friedmann-Robertson-Walker cosmological metrics. In the case that space is flat the theory is consistent only with either a completely empty universe or a negative energy vacuum that decays to produce a constant density of matter. In both cases the total energy remains zero at all times, and in the latter case the acceleration of the expansion is always negative. To obtain a more flexible and potentially more realistic cosmology, the equation of state relating the pressure and energy density of the matter creation process must be different from the vacuum, as for example is the case in the steady-state models of Gold, Bondi, Hoyle and others. The theory does not support the cosmological principle for curved space K =/= 0 cosmological metrics

    Robust leakage-based distributed precoder for cooperative multicell systems

    Get PDF
    Coordinated multipoint (CoMP) from long term evolution (LTE)-advanced is a promising technique to enhance the system spectral efficiency. Among the CoMP techniques, joint transmission has high communication requirements, because of the data sharing phase through the backhaul network, and coordinated scheduling and beamforming reduces the backhaul requirements, since no data sharing is necessary. Most of the available CoMP techniques consider perfect channel knowledge at the transmitters. Nevertheless for practical systems this is unrealistic. Therefore in this study the authors address this limitation by proposing a robust precoder for a multicell-based systems, where each base station (BS) has only access to an imperfect local channel estimate. They consider both the case with and without data sharing. The proposed precoder is designed in a distributed manner at each BS by maximising the signal-to-leakage-and-noise ratio of all jointly processed users. By considering the channel estimation error in the design of the precoder, they are able to reduce considerably the impact of these errors in the system's performance. The results show that the proposed scheme has improved performance especially for the high signal-to-noise ratio regime, where the impact of the channel estimation error may be more pronounced

    Neonatal Pain-Related Stress Predicts Cortical Thickness at Age 7 Years in Children Born Very Preterm

    Get PDF
    Background Altered brain development is evident in children born very preterm (24–32 weeks gestational age), including reduction in gray and white matter volumes, and thinner cortex, from infancy to adolescence compared to term-born peers. However, many questions remain regarding the etiology. Infants born very preterm are exposed to repeated procedural pain-related stress during a period of very rapid brain development. In this vulnerable population, we have previously found that neonatal pain-related stress is associated with atypical brain development from birth to term-equivalent age. Our present aim was to evaluate whether neonatal pain-related stress (adjusted for clinical confounders of prematurity) is associated with altered cortical thickness in very preterm children at school age. Methods 42 right-handed children born very preterm (24–32 weeks gestational age) followed longitudinally from birth underwent 3-D T1 MRI neuroimaging at mean age 7.9 yrs. Children with severe brain injury and major motor/sensory/cognitive impairment were excluded. Regional cortical thickness was calculated using custom developed software utilizing FreeSurfer segmentation data. The association between neonatal pain-related stress (defined as the number of skin-breaking procedures) accounting for clinical confounders (gestational age, illness severity, infection, mechanical ventilation, surgeries, and morphine exposure), was examined in relation to cortical thickness using constrained principal component analysis followed by generalized linear modeling. Results After correcting for multiple comparisons and adjusting for neonatal clinical factors, greater neonatal pain-related stress was associated with significantly thinner cortex in 21/66 cerebral regions (p-values ranged from 0.00001 to 0.014), predominately in the frontal and parietal lobes. Conclusions In very preterm children without major sensory, motor or cognitive impairments, neonatal pain-related stress appears to be associated with thinner cortex in multiple regions at school age, independent of other neonatal risk factors

    Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response

    Get PDF
    Dramatic rise of mutators has been found to accompany adaptation of bacteria in response to many kinds of stress. Two views on the evolutionary origin of this phenomenon emerged: the pleiotropic hypothesis positing that it is a byproduct of environmental stress or other specific stress response mechanisms and the second order selection which states that mutators hitchhike to fixation with unrelated beneficial alleles. Conventional population genetics models could not fully resolve this controversy because they are based on certain assumptions about fitness landscape. Here we address this problem using a microscopic multiscale model, which couples physically realistic molecular descriptions of proteins and their interactions with population genetics of carrier organisms without assuming any a priori fitness landscape. We found that both pleiotropy and second order selection play a crucial role at different stages of adaptation: the supply of mutators is provided through destabilization of error correction complexes or fluctuations of production levels of prototypic mismatch repair proteins (pleiotropic effects), while rise and fixation of mutators occur when there is a sufficient supply of beneficial mutations in replication-controlling genes. This general mechanism assures a robust and reliable adaptation of organisms to unforeseen challenges. This study highlights physical principles underlying physical biological mechanisms of stress response and adaptation

    Characterization of different fat depots in NAFLD using inflammation-associated proteome, lipidome and metabolome

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is recognized as a liver manifestation of metabolic syndrome, accompanied with excessive fat accumulation in the liver and other vital organs. Ectopic fat accumulation was previously associated with negative effects at the systemic and local level in the human body. Thus, we aimed to identify and assess the predictive capability of novel potential metabolic biomarkers for ectopic fat depots in non-diabetic men with NAFLD, using the inflammation-associated proteome, lipidome and metabolome. Myocardial and hepatic triglycerides were measured with magnetic spectroscopy while function of left ventricle, pericardial and epicardial fat, subcutaneous and visceral adipose tissue were measured with magnetic resonance imaging. Measured ectopic fat depots were profiled and predicted using a Random Forest algorithm, and by estimating the Area Under the Receiver Operating Characteristic curves. We have identified distinct metabolic signatures of fat depots in the liver (TAG50:1, glutamate, diSM18:0 and CE20:3), pericardium (N-palmitoyl-sphinganine, HGF, diSM18:0, glutamate, and TNFSF14), epicardium (sphingomyelin, CE20:3, PC38:3 and TNFSF14), and myocardium (CE20:3, LAPTGF-beta 1, glutamate and glucose). Our analyses highlighted non-invasive biomarkers that accurately predict ectopic fat depots, and reflect their distinct metabolic signatures in subjects with NAFLD.Peer reviewe
    corecore