384 research outputs found

    Video enhancement using adaptive spatio-temporal connective filter and piecewise mapping

    Get PDF
    This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC) noise filter and an adaptive piecewise mapping function (APMF). For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises - Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results

    Improved trapping and handling of an arboreal, montane mammal: Red Panda Ailurus fulgens

    Get PDF
    It is sometimes essential to have an animal in the hand to study some of their ecological and biological characteristics. However, capturing a solitary, cryptic, elusive arboreal species such as the red panda in the wild is challenging. We developed and successfully tested a protocol for tracking, trapping, immobilization, and handling of red pandas in the wild in eastern Nepal. We established a red panda sighting rate of 0.89 panda/day with a capture success rate of 0.6. We trapped and collared one animal in 3.7 days. On average, we took nearly 136 (range 50–317) min to capture an animal after spotting it. Further processing was completed in 38.5 (21–70) min. Before capture, we found it difficult to recognize the sex of the red panda and to differentiate sub-adults above six months from adults. However, body weight, body length, tail length, shoulder height, and chest girth can be used for diagnosis, as these attributes are smaller in sub-adults. Our method is a welfare-friendly way of trapping and handling wild red pandas. We report new morphometric data that could serve as a guide for field identification

    MMP28 (epilysin) as a novel promoter of invasion and metastasis in gastric cancer

    Get PDF
    Background\ud The purpose of this study was to investigate invasion and metastasis related genes in gastric cancer.\ud \ud Methods\ud The transwell migration assay was used to select a highly invasive sub-line from minimally invasive parent gastric cancer cells, and gene expression was compared using a microarray. MMP28 upregulation was confirmed using qRT-PCR. MMP28 immunohistochemistry was performed in normal and gastric cancer specimens. Invasiveness and tumor formation of stable cells overexpressing MMP28 were tested in vitro and in vivo.\ud \ud Results\ud MMP28 was overexpressed in the highly invasive sub-cell line. Immunohistochemistry revealed MMP28 expression was markedly increased in gastric carcinoma relative to normal epithelia, and was significantly associated with depth of tumor invasion, lymph node metastasis and poorer overall survival. Ectopic expression of MMP28 indicated MMP28 promoted tumor cell invasion in vitro and increased gastric carcinoma metastasis in vivo.\ud \ud Conclusions\ud This study indicates MMP28 is frequently overexpressed during progression of gastric carcinoma, and contributes to tumor cell invasion and metastasis. MMP28 may be a novel therapeutic target for prevention and treatment of metastases in gastric cancer

    Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory

    Get PDF
    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to complement the study of ultra-high-energy cosmic rays (UHECR) by measuring the muon content of extensive air showers (EAS). It consists of an array of 61 water Cherenkov detectors on a denser spacing in combination with underground scintillation detectors used for muon density measurement. Each detector is composed of three scintillation modules, with 10 m2 detection area per module, buried at 2.3 m depth, resulting in a total detection area of 30 m2. Silicon photomultiplier sensors (SiPM) measure the amount of scintillation light generated by charged particles traversing the modules. In this paper, the design of the front-end electronics to process the signals of those SiPMs and test results from the laboratory and from the Pierre Auger Observatory are described. Compared to our previous prototype, the new electronics shows a higher performance, higher efficiency and lower power consumption, and it has a new acquisition system with increased dynamic range that allows measurements closer to the shower core. The new acquisition system is based on the measurement of the total charge signal that the muonic component of the cosmic ray shower generates in the detector

    Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory

    Get PDF
    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to complement the study of ultra-high-energy cosmic rays (UHECR) by measuring the muon content of extensive air showers (EAS). It consists of an array of 61 water Cherenkov detectors on a denser spacing in combination with underground scintillation detectors used for muon density measurement. Each detector is composed of three scintillation modules, with 10 m2 detection area per module, buried at 2.3 m depth, resulting in a total detection area of 30 m2 . Silicon photomultiplier sensors (SiPM) measure the amount of scintillation light generated by charged particles traversing the modules. In this paper, the design of the front-end electronics to process the signals of those SiPMs and test results from the laboratory and from the Pierre Auger Observatory are described. Compared to our previous prototype, the new electronics shows a higher performance, higher efficiency and lower power consumption, and it has a new acquisition system with increased dynamic range that allows measurements closer to the shower core. The new acquisition system is based on the measurement of the total charge signal that the muonic component of the cosmic ray shower generates in the detector.Fil: Aab, A.. Radboud Universiteit Nijmegen; Países BajosFil: Abreu, P.. Instituto Superior Tecnico; PortugalFil: Aglietta, M.. Istituto Nazionale di Astrofisica; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Albury, J. M.. University of Adelaide; AustraliaFil: Allekotte, Ingomar. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Almela, A.. Universidad Nacional de San Martín; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Alvarez Muñiz, J.. Universidad de Santiago de Compostela; EspañaFil: Alves Batista, R.. Radboud Universiteit Nijmegen; Países BajosFil: Anastasi, G. A.. Università di Torino; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Anchordoqui, Luis A.. City University of New York; Estados UnidosFil: Andrada, Betiana Eugenia. Universidad Nacional de San Martín; ArgentinaFil: Andringa, S.. Instituto Superior Tecnico; PortugalFil: Aramo, C.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Araújo Ferreira, P. R.. Rwth Aachen University; AlemaniaFil: Asorey, H.. Universidad Nacional de San Martín; ArgentinaFil: Assis, P.. Instituto Superior Tecnico; PortugalFil: Avila, G.. Observatorio Pierre Auger; ArgentinaFil: Badescu, A. M.. University Politehnica Of Bucharest; RumaniaFil: Bakalova, A.. The Czech Academy Of Sciences; República ChecaFil: Balaceanu, A.. “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele; RumaniaFil: Barbato, F.. Università degli Studi di Napoli Federico II; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Barreira Luz, R. J.. Instituto Superior Tecnico; PortugalFil: Becker, K. H.. Bergische Universität Wuppertal; AlemaniaFil: Bellido, J. A.. University of Adelaide; AustraliaFil: Berat, C.. Universite Grenoble Alpes; FranciaFil: Bertaina, M. E.. Università di Torino; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Bertou, Xavier Pierre Louis. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Biermann, P. L.. Max Planck Institute For Radio Astronomy; AlemaniaFil: Bister, T.. Rwth Aachen University; AlemaniaFil: Gollan Scilipotti, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; Argentin

    The FRAM robotic telescope for atmospheric monitoring at the Pierre Auger Observatory

    Get PDF
    FRAM (F/Photometric Robotic Atmospheric Monitor) is a robotic telescope operated at the Pierre Auger Observatory in Argentina for the purposes of atmospheric monitoring using stellar photometry. As a passive system which does not produce any light that could interfere with the observations of the fluorescence telescopes of the observatory, it complements the active monitoring systems that use lasers. We discuss the applications of stellar photometry for atmospheric monitoring at optical observatories in general and the particular modes of operation employed by the Auger FRAM. We describe in detail the technical aspects of FRAM, the hardware and software requirements for a successful operation of a robotic telescope for such a purpose and their implementation within the FRAM system

    Calibration of the underground muon detector of the Pierre Auger Observatory

    Get PDF
    To obtain direct measurements of the muon content of extensive air showers with energy above 101 eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 m2-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon content allows for the study of both of the composition of primary cosmic rays and of high-energy hadronic interactions in the forward direction. As the muon density can vary between tens of muons per m close to the intersection of the shower axis with the ground to much less than one per m when far away, the necessary broad dynamic range is achieved by the simultaneous implementation of two acquisition modes in the read-out electronics: the binary mode, tuned to count single muons, and the ADC mode, suited to measure a high number of them. In this work, we present the end-to-end calibration of the muon detector modules: first, the SiPMs are calibrated by means of the binary channel, and then, the ADC channel is calibrated using atmospheric muons, detected in parallel to the shower data acquisition. The laboratory and field measurements performed to develop the implementation of the full calibration chain of both binary and ADC channels are presented and discussed. The calibration procedure is reliable to work with the high amount of channels in the UMD, which will be operated continuously, in changing environmental conditions, for several years
    corecore