3,430 research outputs found
Gesunder Boden - gesunde Pflanzen
Obwohl viele ältere Biobetriebe kleinere Nährstoffgehalte im Boden aufwiesen, waren diese noch nicht ertragsbegrenzend. Die abnehmenden Nährstoffgehalte im Boden und den Pflanzen zeigen, dass regelmässige Bodenanalysen auf dem Biobetrieb nötig sind. Die Suppressivität der Böden hing nicht direkt von den Biojahren ab. Durch die Gestaltung der Fruchtfolge und den Hofdüngereinsatz lässt sie sich aber steigern. Der Zusammenhang zwischen Bewirtschaftung Bodeneigenschaften und der Suppressivität muss genauer untersucht werden
Pilot Experiments with Electrodialysis and Ozonation for the Production of a Fertilizer from Urine
Pilot tests were performed with a process combination of electrodialysis and ozonation for the removal of micropollutants and the concentration of nutrients in urine. In continuous and batch experiments, maximum concentration factors up to 3.5 and 4.1 were obtained, respectively. The desalination capacity did not decrease significantly during continuous operation periods of several weeks. Membrane cleaning after 195 days resulted in approximately 35% increase in desalination rate. The Yeast Estrogen Screen (YES), a bioassay that selectively detects oestrogenic compounds, confirmed that about 90% of the oestrogenic activity was removed by electrodialysis. HPLC analysis showed that ibuprofen was removed to a high extent, while other micropollutants were below the detection limit. In view of the fact that ibuprofen is among the most rapidly transported micropollutants in electrodialysis processes, this result indicates that electrodialysis provides an effective barrier for micropollutants. Standardised plant growth tests were performed in the field with the salt solution resulting from the treatment by electrodialysis and subsequent ozonation. The results show that the plant height is comparable to synthetic fertilisers, but the crop yield is slightly lower. The latter is probably caused by volatilisation losses during field application, which can be prevented by improved application technologies
Photoemission of a doped Mott insulator: spectral weight transfer and qualitative Mott-Hubbard description
The spectral weight evolution of the low-dimensional Mott insulator TiOCl
upon alkali-metal dosing has been studied by photoelectron spectroscopy. We
observe a spectral weight transfer between the lower Hubbard band and an
additional peak upon electron-doping, in line with quantitative expectations in
the atomic limit for changing the number of singly and doubly occupied sites.
This observation is an unconditional hallmark of correlated bands and has not
been reported before. In contrast, the absence of a metallic quasiparticle peak
can be traced back to a simple one-particle effect.Comment: 4 pages, 4 figures, related theoretical work can be found in
arXiv:0905.1276; shortene
Large-eddy simulation of mesoscale dynamics and entrainment around a pocket of open cells observed in VOCALS-REx RF06
Large-eddy simulations of a pocket of open cells (POC) based on VOCALS Regional Experiment (REx) NSF C-130 Research Flight 06 are analyzed and compared with aircraft observations. A doubly-periodic domain 192 km × 24 km with 125 m horizontal and 5 m vertical grid spacing near the capping inversion is used. The POC is realized in the model as a fixed 96 km wide region of reduced cloud droplet number concentration (<i>N</i><sub>c</sub>) based on observed values; initialization and forcing are otherwise uniform across the domain. The model reproduces aircraft-observed differences in boundary-layer structure and precipitation organization between a well-mixed overcast region and a decoupled POC with open-cell precipitating cumuli, although the simulated cloud cover is too large in the POC. A sensitivity study in which <i>N</i><sub>c</sub> is allowed to advect following the turbulent flow gives nearly identical results over the 16 h length of the simulation (which starts at night and goes into the next afternoon). <br><br> The simulated entrainment rate is nearly a factor of two smaller in the less turbulent POC than in the more turbulent overcast region. However, the inversion rises at a nearly uniform rate across the domain because powerful buoyancy restoring forces counteract horizontal inversion height gradients. A secondary circulation develops in the model that diverts subsiding free-tropospheric air away from the POC into the surrounding overcast region, counterbalancing the weaker entrainment in the POC with locally weaker subsidence
Silicate weathering in anoxic marine sediments
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50–150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4–99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198–245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22–15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5–20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering
Understanding and optimising the packing density of perylene bisimide layers on CVD-grown graphene
The non-covalent functionalisation of graphene is an attractive strategy to
alter the surface chemistry of graphene without damaging its superior
electrical and mechanical properties. Using the facile method of aqueous-phase
functionalisation on large-scale CVD-grown graphene, we investigated the
formation of different packing densities in self-assembled monolayers (SAMs) of
perylene bisimide derivatives and related this to the amount of substrate
contamination. We were able to directly observe wet-chemically deposited SAMs
in scanning tunnelling microscopy (STM) on transferred CVD graphene and
revealed that the densely packed perylene ad-layers adsorb with the conjugated
{\pi}-system of the core perpendicular to the graphene substrate. This
elucidation of the non-covalent functionalisation of graphene has major
implications on controlling its surface chemistry and opens new pathways for
adaptable functionalisation in ambient conditions and on the large scale.Comment: 27 pages (including SI), 10 figure
First Operation of a Resistive Shell Liquid Argon Time Projection Chamber -- A new Approach to Electric-Field Shaping
We present a new technology for the shaping of the electric field in Time
Projection Chambers (TPCs) using a carbon-loaded polyimide foil. This
technology allows for the minimisation of passive material near the active
volume of the TPC and thus is capable to reduce background events originating
from radioactive decays or scattering on the material itself. Furthermore, the
high and continuous electric resistivity of the foil limits the power
dissipation per unit area and minimizes the risks of damages in the case of an
electric field breakdown. Replacing the conventional field cage with a
resistive plastic film structure called 'shell' decreases the number of
components within the TPC and therefore reduces the potential points of failure
when operating the detector. A prototype liquid argon (LAr) TPC with such a
resistive shell and with a cathode made of the same material was successfully
tested for long term operation with electric field values up to about 1.5
kV/cm. The experiment shows that it is feasible to successfully produce and
shape the electric field in liquefied noble-gas detectors with this new
technology.Comment: 13 page
- …