179 research outputs found

    PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies

    Get PDF
    This paper presents the physicochemical, conductive, and electrochemical properties of different polyaniline (PANI)-derived polymer/Al2O3 nanocomposites synthesized by chemical oxidation polymerization method carried out in two stages: first, activation of the surface of the Al2O3 nanoparticles by hydrochloric acid and second, polymerization of 2-chloroaniline (2ClANI), aniline (ANI), and the copolymer (2ClANI-ANI) in the presence of Al2O3 by using ammonium persulfate as oxidant in aqueous hydrochloric acid. XRD and TEM results reveal the growth of the polymers on Al2O3 nanoparticles and the formation of PANI-derived polymer/Al2O3 nanocomposites. FTIR and UV-Vis show a systematic shifting of the characteristic bands of the polymers with the presence of Al2O3 nanoparticles. Moreover, these nanoparticles enhance the thermal stability of the polymers, as found by thermogravimetric analysis (TGA). Although the incorporation of Al2O3 nanoparticles reduces the electric conductivity of the polymers, the resulting nanocomposites still keep high conductivities, ranging between 0.3 × 10−2 and 9.2 × 10−2 S cm−1. As a result, the polymer/Al2O3 nanocomposites exhibit a good voltammetric response. All these synergetic features of the nanocomposites are assigned to the effective interaction of the polymers and Al2O3 particles at nanoscale.This work was supported by the National Assessment and Planning Committee of the University Research (CNEPRU number E-03720130015), the Directorate General of Scientific Research and Technological Development (DGRSDT) of Algeria. The financial support from MINECO is also acknowledged (MAT2013-42007-P project)

    Correlated Photon-Pair Emission from a Charged Single Quantum Dot

    Full text link
    The optical creation and recombination of charged biexciton and trion complexes in an (In,Ga)As/GaAs quantum dot is investigated by micro-photoluminescence spectroscopy. Photon cross-correlation measurements demonstrate the temporally correlated decay of charged biexciton and trion states. Our calculations provide strong evidence for radiative decay from the excited trion state which allows for a deeper insight into the spin configurations and their dynamics in these systems.Comment: 5 pages, 3 figures, submitted for publicatio

    Analysis of Static Bending of Plates FGM Using Refined High Order Shear Deformation Theory

    Get PDF
    This work deals with the analysis of the mechanical bending behavior of a rectangular plate simply supported on four sides (FGM), subjected to transverse static loading. The high order theory is used in this work, The developed models are variably consistent, have a strong similarity with the classical plate theory in many aspects, do not require correction to the shear factor, and give rise to variations transverse shear stresses such as transverse shear parabolically varies across the shear thickness and satisfies surface conditions without stresses. Equilibrium equations are obtained by applying the principle of virtual works. The mathematical expressions of the arrow, the stresses are obtained using Navies approach to solve the system of equilibrium equations. The influence of mechanical loading and the change of the parameter of the material on mechanical behavior of the plate P-FGM are represented by a numerical example

    Effect of confinement potential shape on exchange interaction in coupled quantum dots

    Full text link
    Exchange interaction has been studied for electrons in coupled quantum dots (QD's) by a configuration interaction method using confinement potentials with different profiles. The confinement potential has been parametrized by a two-centre power-exponential function, which allows us to investigate various types of QD's described by either soft or hard potentials of different range. For the soft (Gaussian) confinement potential the exchange energy decreases with increasing interdot distance due to the decreasing interdot tunnelling. For the hard (rectangular-like) confinement potential we have found a non-monotonic behaviour of the exchange interaction as a function of distance between the confinement potential centres. In this case, the exchange interaction energy exhibits a pronounced maximum for the confinement potential profile which corresponds to the nanostructure composed of the small inner QD with a deep potential well embedded in the large outer QD with a shallow potential well. This effect results from the strong localization of electrons in the inner QD, which leads to the large singlet-triplet splitting. Implications of this finding for quantum logic operations have been discussed.Comment: 16 pages, including 11 figure

    Immersive virtual reality and antigravity treadmill training for gait rehabilitation in Parkinson’s disease: A pilot and feasibility study

    Get PDF
    Introduction. Treadmill training is considered an effective intervention to improve gait ability in patients with Parkinson’s disease (PD). In parallel, virtual reality shows promising intervention with several applications in the inpatient medical setting. Aim. To evaluate the feasibility and preliminary efficacy of mechanical gait assistance combined with immersive virtual reality in patients with PD. Patients and methods. This pilot and feasibility study followed a pre-post study design. The intervention consisted of 12 sessions of 30 minutes, distributed regularly over four consecutive weeks. Participants walked on a treadmill with a body- weight support system set at approximately 20% of body weight and equipped with a virtual reality helmet controlled by a two-handed joystick. Feasibility and intervention outcomes were collected at baseline and after four weeks of intervention. Results. Twelve participants of 60 patients were finally enrolled. Nine of them (75%) completed the treatment intervention with an adherence rate of 97%. Two participants left the study, one of them due to sickness associated with virtual reality and another because of a lack of motivation. There were significant differences associated with small-medium effect sizes when comparing the pre and post values for walk distance, walk speed, balance, and quality of life. Conclusions. The present study provided preliminary evidence supporting the feasibility of the combination of antigravity treadmill and immersive virtual reality system for the rehabilitation of patients with PD

    OPTIMAL SIZING OF A HYBRID PHOTOVOLTAIC/WIND SYSTEM SUPPLYING A DESALINATION UNIT

    Get PDF
    This work presents the dimensioning of a wind-photovoltaic hybrid system for the supply of a seawater desalination plant (reverse osmosis desalination) located in Honaïne in the Tlemcen coastal region of Algeria. The plant has a production capacity of 200,000 m3 /day and supplies potable water for a population of about 555,000 people (the plant's energy demand is 1,825 MW). The main idea is to present a method for sizing and optimizing a hybrid system by introducing two scenarios: the first scenario treats the operation of the plant under good weather conditions. The second one introduces the notion of the worst month (poor weather conditions). For it, we developed a calculation code (Programming under the MATLAB environment) that allowed us to determine the size and optimization of the system, as well as the optimal technical and economic configuration (numbers of photovoltaic panels, wind turbines and batteries), as well as the total cost. The results obtained show on the one hand: the complementarity of the two scenarios, which allows a better reliability of the system, and this by using a number well defined of panels, wind turbines and batteries to ensure the long-term operation of the plant. On the other hand, the use of the hybrid system has allowed us to obtain a 51.46% benefit compared to fossil fuels, which gives the proposed study an important reliability, since it offers a very advantageous benefit in terms of cost and efficiency
    • …
    corecore