711 research outputs found

    Higher Algebraic Structures and Quantization

    Full text link
    We derive (quasi-)quantum groups in 2+1 dimensional topological field theory directly from the classical action and the path integral. Detailed computations are carried out for the Chern-Simons theory with finite gauge group. The principles behind our computations are presumably more general. We extend the classical action in a d+1 dimensional topological theory to manifolds of dimension less than d+1. We then ``construct'' a generalized path integral which in d+1 dimensions reduces to the standard one and in d dimensions reproduces the quantum Hilbert space. In a 2+1 dimensional topological theory the path integral over the circle is the category of representations of a quasi-quantum group. In this paper we only consider finite theories, in which the generalized path integral reduces to a finite sum. New ideas are needed to extend beyond the finite theories treated here.Comment: 62 pages + 16 figures (revised version). In this revision we make some small corrections and clarification

    Color Doppler imaging of the superior ophthalmic vein in patients with Graves' orbitopathy before and after treatment of congestive disease

    Get PDF
    OBJECTIVE: To compare superior ophthalmic vein blood flow parameters measured with color Doppler imaging in patients with congestive Graves' orbitopathy before and after treatment and in normal controls. METHODS: Twenty-two orbits from 12 patients with Graves' orbitopathy in the congestive stage and 32 orbits from 16 normal controls underwent color Doppler imaging studies. Color Doppler imaging was repeated after treatment in the group of patients with Graves' orbitopathy, which included orbital decompression in 16 orbits and corticosteroids in six orbits. The findings for each group were compared. RESULTS: In the group of orbits with congestive disease, superior ophthalmic vein flow was detected in 17 orbits (anteroposteriorally in 13 and in the opposite direction in four) and was undetectable in five. After treatment, superior ophthalmic vein flow was detected and anteroposterior in 21 and undetected in one orbit. In normals, superior ophthalmic vein flow was detected anteroposterior in 29 orbits and undetectable in three orbits, indicating a significant difference between groups. There was also a significant difference between controls and congestive Graves' orbits and between congestive orbits before and after treatment, but not between controls and patients after treatment. A comparison of superior ophthalmic vein flow parameters revealed a significant difference between the groups. The superior ophthalmic vein flow was significantly reduced in the congestive stage compared with the flow parameters following treatment and in the untreated controls. CONCLUSIONS: Superior ophthalmic vein flow was significantly reduced in the orbits affected with congestive Graves' orbitopathy and returned to normal following treatment. Congestion appears to be a contributing pathogenic factor in the active inflammatory stage of Graves' orbitopathy.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Spatio-temporal analysis of North African forest cover dynamics using time series of vegetation indices – case of the Maamora forest (Morocco)

    Get PDF
    North African forest areas play several roles and functions and represent a heritage of great economic and ecological importance. As a result of global changes, that act independently or synergistically, these areas are currently undergoing a pronounced degradation and their productivity is decreasing due to several factors. This work aims to characterize spatio-temporal dynamics of vegetation within the Maamora forest. This forest is considered as the most extensive cork oak woodland in the world and is divided, from west to east, into five cantons A, B, C, D and E. The data, extracted between 2000–2021 from MODIS NDVI/EVI images of 250 m, were analyzed using statistical parameters with the Pettitt homogeneity and the Mann-Kendall trend tests, with their seasonal and spatial components, in order to better consider the vegetation distribution of this forest. Results show a clear temporal and spatial (inter-canton) variability of vegetation intensity, unrelated to the continental gradient. In fact, recorded mean values in cantons C and E are significantly higher than those of cantons B and D respectively. This is confirmed by both regressive and progressive trends, which were identified respectively from the months of March 2012 and October 2008, in the data series of cantons B and E successively. Spatially, the regressive dynamic remains generalized and affects more than 26.7% of the Maamora’s total area with extreme rates (46.1% and 14.0%) recorded respectively by the two aforementioned cantons. Similarly, all the stand types in canton B show the highest regressive rates, especially the cork oak regeneration strata (75.4%) and the bare lands (86.1%), which may explain the positive tendencies identified by the related series during the fall season. However, the cantons C and E record the lowest rates, respectively, for natural stands of cork oak and artificial plantations. These results highlight also the absence of a causal relationship between the contrasting vegetation dynamics of the Maamora and the climatic conditions, expressed here by the continental gradient. However, they do highlight the effects of other factors, particularly those of a technical nature

    Impact of climate change on potential distribution of Quercus suber in the conditions of North Africa

    Get PDF
    Climate change, which is expected to continue in the future, is increasingly becoming a major concern affecting many components of the biodiversity and human society. Understanding its impacts on forest ecosystems is essential for undertaking long-term management and conservation strategies. This study was focused on modeling the potential distribution of Quercus suber in the Maamora Forest, the world’s largest lowland cork oak forest, under actual and future climate conditions and identifying the environmental factors associated with this distribution. Maximum Entropy approach was used to train a Species Distribution Model and future predictions were based on different greenhouse gas emission scenarios (Representative Concentration Pathway RCPs). The results showed that the trained model was highly reliable and reflected the actual and future distributions of Maamora’s cork oak. It showed that the precipitation of the coldest and wettest quarter and the annual temperature range are the environmental factors that provide the most useful information for Q. suber distribution in the study area. The computed results of cork oak’s habitat suitability showed that predicted suitable areas are site-specific and seem to be highly dependent on climate change. The predicted changes are significant and expected to vary (decline of habitat suitability) in the future under the different emissions pathways. It indicates that climate change may reduce the suitable area for Q. suber under all the climate scenarios and the severity of projected impacts is closely linked to the magnitude of the climate change. The percent variation in habitat suitability indicates negative values for all the scenarios, ranging –23% to –100%. These regressions are projected to be more important under pessimist scenario RCP8.5. Given these results, we recommend including the future climate scenarios in the existing management strategies and highlight the usefulness of the produced predictive suitability maps under actual and future climate for the protection of this sensitive forest and its key species – cork oak, as well as for other forest species

    Evaluation of the effect of polymorphism on G-quadruplex-ligand interaction by means of spectroscopic and chromatographic techniques

    Get PDF
    Guanine-rich sequences may fold into highly ordered structures known as G-quadruplexes. Apart from the monomeric G-quadruplex, these sequences may form multimeric structures that are not usually considered when studying interaction with ligands. This work studies the interaction of a ligand, crystal violet, with three guanine-rich DNA sequences with the capacity to form multimeric structures. These sequences correspond to short stretches found near the promoter regions of c-kit and SMARCA4 genes. Instrumental techniques (circular dichroism, molecular fluorescence, size-exclusion chromatography and electrospray ionization mass spectrometry) and multivariate data analysis were used for this purpose. The polymorphism of G-quadruplexes was characterized prior to the interaction studies. The ligand was shown to interact preferentially with the monomeric G-quadruplex; the binding stoichiometry was 1:1 and the binding constant was in the order of 105 M-1 for all three sequences. The results highlight the importance of DNA treatment prior to interaction studie

    THERMAL CONDUCTIVITY FOR A NOISY DISORDERED HARMONIC CHAIN

    Get PDF
    We consider a dd-dimensional disordered harmonic chain (DHC) perturbed by an energy conservative noise. We obtain uniform in the volume upper and lower bounds for the thermal conductivity defined through the Green-Kubo formula. These bounds indicate a positive finite conductivity. We prove also that the infinite volume homogenized Green-Kubo formula converges

    Heat Conduction and Entropy Production in Anharmonic Crystals with Self-Consistent Stochastic Reservoirs

    Full text link
    We investigate a class of anharmonic crystals in dd dimensions, d≥1d\ge 1, coupled to both external and internal heat baths of the Ornstein-Uhlenbeck type. The external heat baths, applied at the boundaries in the 1-direction, are at specified, unequal, temperatures \tlb and \trb. The temperatures of the internal baths are determined in a self-consistent way by the requirement that there be no net energy exchange with the system in the non-equilibrium stationary state (NESS). We prove the existence of such a stationary self-consistent profile of temperatures for a finite system and show it minimizes the entropy production to leading order in (\tlb -\trb). In the NESS the heat conductivity κ\kappa is defined as the heat flux per unit area divided by the length of the system and (\tlb -\trb). In the limit when the temperatures of the external reservoirs goes to the same temperature TT, κ(T)\kappa(T) is given by the Green-Kubo formula, evaluated in an equilibrium system coupled to reservoirs all having the temperature TT. This κ(T)\kappa(T) remains bounded as the size of the system goes to infinity. We also show that the corresponding infinite system Green-Kubo formula yields a finite result. Stronger results are obtained under the assumption that the self-consistent profile remains bounded.Comment: to appear in J. Stat. Phy

    On the Role of Pre-Determined Rules for HRM Policies

    Get PDF
    Using simple game-theoretical models, this paper studies the role of pre-determined rules for HRM policies. We consider a model in which HRM decisions affect employees' self-images and thereby their motivation. We show that in the absence of written rules, managers are too reluctant (1) to differentiate between employees on the basis of their abilities, and (2) to terminate employment of employees on probation. Generally, organizations benefit from committing to strict rules for various HRM practices
    • …
    corecore