50 research outputs found

    Bioleaching of Pyrite by Iron-Oxidizing Acidophiles under the Influence of Reactive Oxygen Species

    Get PDF
    After 24h of exposure to acidic media, pyrite generates reactive oxygen species (ROS). Freshly-crushed pyrite with grain sizes between 50-100 μm at a 5 % (w/v), pulp density generated 0.17 ± 0.01 mM H2O2, while 10% pyrite generated 0.29 ± 0.01 mM and 30 % pyrite generated approximately 0.83 ± 0.06 mM. These levels of H2O2 inhibit iron oxidation in iron-grown cells of AcidithiobacillusferrooxidansT but not in pyrite-grown cells. ROS originating from pyrite, which was incubated for 24 h in acidic medium, prohibited pyrite dissolution by iron-grown cells, while pyrite-grown cells were adapted to these concentrations of ROS. Periodical addition of 100 μM H2O2 to pyrite cultures inoculated with pyrite-grown cells did not lower iron dissolution as it was observed with iron-grown cells. By high throughput proteomics analysis, an increased expression of proteins related to oxidative stress management, iron-and sulfur oxidation systems, carbon fixation and biofilm formation was observed in biofilm cells grown on pyrite compared to iron-grown cells.</jats:p

    Weak Iron Oxidation by Sulfobacillus thermosulfidooxidans Maintains a Favorable Redox Potential for Chalcopyrite Bioleaching

    Get PDF
    Bioleaching is an emerging technology, describing the microbially assisted dissolution of sulfidic ores that provides a more environmentally friendly alternative to many traditional metal extraction methods, such as roasting or smelting. Industrial interest is steadily increasing and today, circa 15–20% of the world’s copper production can be traced back to this method. However, bioleaching of the world’s most abundant copper mineral chalcopyrite suffers from low dissolution rates, often attributed to passivating layers, which need to be overcome to use this technology to its full potential. To prevent these passivating layers from forming, leaching needs to occur at a low oxidation/reduction potential (ORP), but chemical redox control in bioleaching heaps is difficult and costly. As an alternative, selected weak iron-oxidizers could be employed that are incapable of scavenging exceedingly low concentrations of iron and therefore, raise the ORP just above the onset of bioleaching, but not high enough to allow for the occurrence of passivation. In this study, we report that microbial iron oxidation by Sulfobacillus thermosulfidooxidans meets these specifications. Chalcopyrite concentrate bioleaching experiments with S. thermosulfidooxidans as the sole iron oxidizer exhibited significantly lower redox potentials and higher release of copper compared to communities containing the strong iron oxidizer Leptospirillum ferriphilum. Transcriptomic response to single and co-culture of these two iron oxidizers was studied and revealed a greatly decreased number of mRNA transcripts ascribed to iron oxidation in S. thermosulfidooxidans when cultured in the presence of L. ferriphilum. This allowed for the identification of genes potentially responsible for S. thermosulfidooxidans’ weaker iron oxidation to be studied in the future, as well as underlined the need for new mechanisms to control the microbial population in bioleaching heaps

    Multiple sclerosis risk loci correlate with cervical cord atrophy and may explain the course of disability

    No full text
    Genome-wide association studies (GWAS) underscore the genetic basis of multiple sclerosis (MS); however, only few of the newly reported genetic variations relevant in MS have been replicated or correlated for clinical/paraclinical phenotypes such as spinal cord atrophy in independent patient cohorts. We genotyped 141 MS patients for 58 variations reported to reach significance in GWAS. Expanded disability status scale (EDSS) and disease duration (DD) are available from regular clinical examinations. MRI included sagittal high-resolution 3D T1-weighted magnetization-prepared rapid acquisition gradient echo of the cervical cord region used for volumetry. Due dependency of mean upper cervical cord area (MUCCA) with EDSS and/or DD, correction operations were performed compensating for EDSS/DD. We assessed each MS risk locus for possible MUCCA association. We identified twelve risk loci that significantly correlated with MUCCA. For nine loci—BATF, CYP27B1, IL12B, NFKB1, IL7, PLEK, EVI5, TAGAP and nrs669607—patients revealed significantly higher degree of atrophy; TYK2, RGS1 and CLEC16A revealed inverse effects. The weighted genetic risk score over the twelve loci showed significant correlation with MUCCA. Our data reveal a risk gene depending paraclinical/clinical phenotype. Since MUCCA clearly correlates with disability, the candidates identified here may serve as prognostic markers for disability progression

    Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms.

    No full text
    Industrial biomining processes are currently focused on metal sulfides and their dissolution, which is catalyzed by acidophilic iron(II)- and/or sulfur-oxidizing microorganisms. Cell attachment on metal sulfides is important for this process. Biofilm formation is necessary for seeding and persistence of the active microbial community in industrial biomining heaps and tank reactors, and it enhances metal release. In this study, we used a method for direct quantification of the mineral-attached cell population on pyrite or chalcopyrite particles in bioleaching experiments by coupling high-throughput, automated epifluorescence microscopy imaging of mineral particles with algorithms for image analysis and cell quantification, thus avoiding human bias in cell counting. The method was validated by quantifying cell attachment on pyrite and chalcopyrite surfaces with axenic cultures of &lt;i&gt;Acidithiobacillus caldus&lt;/i&gt; , &lt;i&gt;Leptospirillum ferriphilum&lt;/i&gt; , and &lt;i&gt;Sulfobacillus thermosulfidooxidans.&lt;/i&gt; The method confirmed the high affinity of &lt;i&gt;L. ferriphilum&lt;/i&gt; cells to colonize pyrite and chalcopyrite surfaces and indicated that biofilm dispersal occurs in mature pyrite batch cultures of this species. Deep neural networks were also applied to analyze biofilms of different microbial consortia. Recent analysis of the &lt;i&gt;L. ferriphilum&lt;/i&gt; genome revealed the presence of a diffusible soluble factor (DSF) family quorum sensing system. The respective signal compounds are known as biofilm dispersal agents. Biofilm dispersal was confirmed to occur in batch cultures of &lt;i&gt;L. ferriphilum&lt;/i&gt; and &lt;i&gt;S. thermosulfidooxidans&lt;/i&gt; upon the addition of DSF family signal compounds. &lt;b&gt;IMPORTANCE&lt;/b&gt; The presented method for the assessment of mineral colonization allows accurate relative comparisons of the microbial colonization of metal sulfide concentrate particles in a time-resolved manner. Quantitative assessment of the mineral colonization development is important for the compilation of improved mathematical models for metal sulfide dissolution. In addition, deep-learning algorithms proved that axenic or mixed cultures of the three species exhibited characteristic biofilm patterns and predicted the biofilm species composition. The method may be extended to the assessment of microbial colonization on other solid particles and may serve in the optimization of bioleaching processes in laboratory scale experiments with industrially relevant metal sulfide concentrates. Furthermore, the method was used to demonstrate that DSF quorum sensing signals directly influence colonization and dissolution of metal sulfides by mineral-oxidizing bacteria, such as &lt;i&gt;L. ferriphilum&lt;/i&gt; and &lt;i&gt;S. thermosulfidooxidans&lt;/i&gt;

    Towards bioleaching of a vanadium containing magnetite for metal recovery

    Get PDF
    Abstract Vanadium — a transition metal — is found in the ferrous-ferric mineral, magnetite. Vanadium has many industrial applications, such as in the production of high-strength low-alloy steels, and its increasing global industrial consumption requires new primary sources. Bioleaching is a biotechnological process for microbially catalyzed dissolution of minerals and wastes for metal recovery such as biogenic organic acid dissolution of bauxite residues. In this study, 16S rRNA gene amplicon sequencing was used to identify microorganisms in Nordic mining environments influenced by vanadium containing sources. These data identified gene sequences that aligned to the Gluconobacter genus that produce gluconic acid. Several strategies for magnetite dissolution were tested including oxidative and reductive bioleaching by acidophilic microbes along with dissimilatory reduction by Shewanella spp. that did not yield significant metal release. In addition, abiotic dissolution of the magnetite was tested with gluconic and oxalic acids, and yielded 3.99 and 81.31% iron release as a proxy for vanadium release, respectively. As a proof of principle, leaching via gluconic acid production by Gluconobacter oxydans resulted in a maximum yield of 9.8% of the available iron and 3.3% of the vanadium. Addition of an increased concentration of glucose as electron donor for gluconic acid production alone, or in combination with calcium carbonate to buffer the pH, increased the rate of iron dissolution and final vanadium recoveries. These data suggest a strategy of biogenic organic acid mediated vanadium recovery from magnetite and point the way to testing additional microbial species to optimize the recovery
    corecore