This is an accepted manuscript of an article published by Trans Tech Publications in Solid State Phenomena (accepted June 01 2017) available at:

doi:10.4028/www.scientific.net/SSP.262.372

Bioleaching of pyrite by iron - oxidizing acidophiles under the influence of reactive oxygen species

Dieu Huynh^{1,a*}, Sören Bellenberg^{2,b}, Mario Vera^{3,c}, Ansgar Poetsch^{4,d}, and Wolfgang Sand^{1,5,e}.

¹Insitute of Biosciences, Leipziger Str.29, TU Bergakademie Freiberg, Germany

²Biofilm Centre, Universität Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany

³Institute for Biological and Medical Engineering. Schools of Engineering, Medicine and Biological Scienes, Department of Hydraulic and Environmental Engineering. School of Engineering, Pontificia Universidad Católica de Chile

⁴ Ansgar Poetsch, School of Biomedical and Healthcare Sciences, Plymouth University PL4 8AA, United Kingdom

⁵Donghua University, College of Environmental Engineering, Songjiang, Shanghai, PR China

^angoc-dieu.huynh@ioez.tu-freiberg.de, ^bsoeren.bellenberg@uni-due.de, ^cmaverav@uc.cl, ^dansgar.poetsch@ruhr-uni-bochum.de, ^ewolfgang.sand@uni-due.de

Keywords: bioleaching, oxidative stress, iron-oxidizing bacteria, proteomics.

Abstract

After 24h of exposure to acidic media, pyrite generates reactive oxygen species (ROS). Freshly-crushed pyrite with grain sizes between 50-100 μ m at 5 % (w/v) pulp density generated 0.17 \pm 0.01 mM H₂O₂, while 10% pyrite generated 0.29 \pm 0.01 mM and 30 % pyrite generated 0.83 \pm 0.06 mM. These levels of H₂O₂ probably inhibited iron oxidation in iron-grown cells of *Acidithiobacillus ferrooxidans*^T but not in pyrite-grown cells. ROS originating from pyrite, which was incubated for 24 h in acidic medium, likely prohibited pyrite dissolution by iron-grown cells, while pyrite-grown cells were probably adapted to these concentrations of ROS. Periodical addition of 100 μ M H₂O₂ to pyrite cultures inoculated with pyrite-grown cells did not decrease iron dissolution. By high throughput proteomics analysis, an increased expression of proteins related to oxidative stress management, iron-and sulfur oxidation systems, carbon fixation and biofilm formation was observed in biofilm cells grown on pyrite compared to iron-grown cells.

Introduction

In acidic conditions, sulfide minerals, especially pyrite, generate toxic ROS, resulting in oxidative stress of acidophilic metal oxidizing microorganisms [1, 2]. Pyrite spontaneously generated H_2O_2 , $(O_2^{\bullet})^{-}$ and OH^{\bullet} radicals in aqueous solution either in the presence or in the absence of oxygen [3, 4]. As a result, bioleaching bacteria are likely to be confronted with high levels of oxidative stress. It is indicated that in comparison with iron-grown cells, pyrite- grown cells of *A. ferrooxidans*^T are better adapted to H_2O_2 [5]. Studies on the oxidative stress response of acidophiles have been carried

out [6, 7], though the influence of ROS on bioleaching and strategies to withstand ROS of *A*. *ferrooxidans*^T are still inadequately understood. The aim of this study was to characterize the effect of H₂O on *A*. *ferrooxidans*^T grown with iron or pyrite as growth substrate and subsequently on pyrite bioleaching efficiency. High throughput proteomics analysis was used to get insights into the mechanisms for ROS tolerance in *A*. *ferrooxidans*^T.

Materials and Methods

Bacteria and cultivation conditions. *A. ferrooxidans*^T was grown in Mackintosh medium [8] adjusted to pH 1.8, supplied either with ferrous iron 3 gL⁻¹ or pyrite at 5% w/v (50-100 μ m grain size); cultures were incubated at 28^oC and shaking at 120 rpm.

Pyrite grains. Pyrite was prepared as described [9] and sterilized by autoclaving at 120° C for 4h under N₂ atmosphere.

Quantification of H_2O_2 : H_2O_2 was quantified using the spectrophotometric determination method of Baga [10].

Iron determination. Pyrite dissolution was assessed by quantification of ferrous and total iron concentration using the 1,10-phenathroline method according to German standards [5].

Proteomics analysis. Proteins from biofilm cells grown on pyrite surfaces and cells grown on ferrous iron after 5 days of incubation were extracted, purified, and analyzed as described [11].

Results and Discussion

Generation of H₂O₂ in pyrite-containing acidic MAC media. Table 1 summarizes the concentrations of H₂O₂ produced by pyrite after 24 h incubation in MAC media. Obviously, pyrite generated H₂O₂ in dependence of pyrite grain size and pulp density. Pyrite with the grain size of 50-100 μ m generated higher concentrations of H₂O₂ than the fraction with 100-200 μ m grain size. Also, pulp densities of 30% (w/v) generated H₂O₂ concentrations 5 times higher than that of 5% (w/v).

Tab. 1. H_2O_2 generation (mM) by pyrite of different grain size and pulp density after 24h in MAC medium.

	Pulp density % (w/v)		
Grain sizes (µm)	5	10	30
50-100	0.17 ± 0.01	0.29 ± 0.01	0.83 ± 0.06
100-200	0.05 ± 0.00	0.09 ± 0.01	0.25 ± 0.01

About 0.9 mM H₂O₂ is formed by a pyrite load of 10% (pyrite sizes <106 μ m) at pH 4.5 and more H₂O₂ is formed at lower pH [12]. The H₂O₂ generated in this study was lower than in the study by Nooshabadi et al [12]. However, H₂O₂ concentrations of \geq 50 μ M have significant toxic effects on *A.ferrooxidans* [13, 14]. Therefore, 5% (w/v) pyrite loading, a size of 50-100, generates toxic levels of H₂O₂ for *A.ferrooxidans*.

Pyrite dissolution. Figure 1 shows the dissolution of pyrite by *A.ferrooxidans*^T. Total concentration of iron in solution without the preincubation of pyrite was nearly two times the total iron concentration in solution with pyrite-generated H_2O_2 in the case of iron-grown cells (**a**). In contrast, there was no significant reduction in pyrite dissolution when pyrite-grown cells were used (**b**).

Also, in case of pyrite-grown cells no significant differences in pyrite dissolution assays with the periodical additions of external H_2O_2 concentrations occurred (Figure 2). In abiotic assays, with and without addition of H_2O_2 , the total iron ions remained relatively constant at low concentration.

In biotic assays, regardless of the addition of external H_2O_2 , total iron concentrations increased steadily and reached approximately 45 mM after 28 days of incubation.

Fig. 1. Pyrite dissolution with a) iron-grown cells and b) pyrite-grown cells of *A.ferrooxidans*^T. Control without preincubation of pyrite (*circles*) and assay with 24h preincubation of pyrite in MAC media (*squares*) were compared. Iron ion concentrations include ferrous iron (*dashed line*) and total iron (*solid line*). The initial cell inoculation was $5*10^7$ cells/mL. All assays in experiment were performed in triplicate; error bars show standard deviation of the mean as indicated.

Fig. 2. Effect of external addition of H_2O_2 on pyrite dissolution using pyrite grown-cells of *A.ferrooxidans*^T. The additions of H_2O_2 were 100 µM at day 0, 6, 12 and 18 (*black arrows*), 500 µM at day 22, 24 (*dotted black arrows*) and 1 mM at day 26 (*grey arrows*). Total iron concentrations were measured in sterile (*circles*) and inoculated (*squares*) pyrite dissolution assays, with (*empty symbols*) and without (*filled symbols*) periodic addition. The initial cell inoculum was $5*10^7$ cells/mL. All assays in experiment were performed in triplicate; error bars show standard deviation of the mean as indicated.

Those results are similar to previous findings, indicating that compared to iron-grown cells, pyrite -grown cells of *A.ferrooxidans*^T were probably adapted to the presence of elevated levels of ROS, which are generated on metal sulfide surfaces [5]. Additionally, although H_2O_2 is commonly known as a toxic agent, at low levels it may also function as signaling agent [15]. Also, pre-exposure to low concentrations of H_2O_2 allows microorganisms to resist efficiently detrimental effects of oxidative stress [16]. Genetic response is of importance among strategies to protect enzymes and DNA against oxidative stress damage [16]. Bioleaching acidophiles possess several proteins responsible for coping with oxidative stress, involving several oxygen detoxification and repair

systems [6]. Proteomic data showed that during the growth with pyrite as energy source, cells of *A.ferrooxidans*^T utilized ROS degradation, redox balance, macromolecule repair mechanisms, metal and oxygen homeostasis as fundamental adaptation strategies to the elevated presence of ROS (data not shown). Also, our shot- gun proteomics analysis indicated that there was a remarkable increase in the expression of proteins related to oxidative stress response in biofilm cells grown on pyrite surfaces compared to iron-grown cells of *A.ferrooxidans*^T.

References

- [1] G.C. Jones, K.C. Corin, R.P. van Hille, and S.T.L. Harrison, The generation of toxic reactive oxygen species (ROS) from mechanically activated sulphide concentrates and its effect on thermophilic bioleaching. Minerals Engineering, 24 (2011) 1198-1208.
- [2] G.C. Jones, R.P. van Hille, and S.T. Harrison, Reactive oxygen species generated in the presence of fine pyrite particles and its implication in thermophilic mineral bioleaching. Appl Microbiol Biotechnol, 97 (2013) 2735-42.
- [3] C.A. Cohn, S. Mueller, E. Wimmer, N. Leifer, S. Greenbaum, D.R. Strongin, and M.A.A. Schoonen, Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochemical Transactions, 7 (2006) 3-3.
- [4] M.J. Borda, A.R. Elsetinow, M.A. Schoonen, and D.R. Strongin, Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early earth. Astrobiology, 1 (2001) 283-8.
- [5] S. Bellenberg, R. Barthen, M. Boretska, R. Zhang, W. Sand, and M. Vera, Manipulation of pyrite colonization and leaching by iron-oxidizing *Acidithiobacillus* species. Appl Microbiol Biotechnol, 99 (2015) 1435-49.
- [6] J.P. Cárdenas, F. Moya, P. Covarrubias, A. Shmaryahu, G. Levicán, D.S. Holmes, and R. Quatrini, Comparative genomics of the oxidative stress response in bioleaching microorganisms. Hydrometallurgy, 127–128 (2012) 162-167.
- [7] L. Dekker, F. Arsene-Ploetze, and J.M. Santini, Comparative proteomics of *Acidithiobacillus ferrooxidans* grown in the presence and absence of uranium. Res Microbiol, 167 (2016) 234-9.
- [8] M.E. Mackintosh, , Nitrogen Fixation by *Thiobacillus ferrooxidans*. Microbiology, 105 (1978) 215-218.
- [9] A. Schippers, P. Jozsa, and W. Sand, Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol,62 (1996) 3424-31.
- [10] A.N. Baga, G.R.A. Johnson, N.B. Nazhat, and R.A. Saadalla-Nazhat, A simple spectrophotometric determination of hydrogen peroxide at low concentrations in aqueous solution. Analytica Chimica Acta, 204 (1988) 349-353.
- [11] M. Vera, B. Krok, S. Bellenberg, W. Sand, and A. Poetsch, Shotgun proteomics study of early biofilm formation process of *Acidithiobacillus ferrooxidans* ATCC 23270 on pyrite. Proteomics, 13 (2013) 1133-44.
- [12] A. Javadi Nooshabadi. and K. Hanumantha Rao, Formation of hydrogen peroxide by sulphide minerals. Hydrometallurgy, 141 (2014) 82-88.
- [13] S. Bellenberg, D.H. Ngoc, L. Castro, M. Boretska, W. Sand, and M. Vera, Reactive Oxygen Species Influence Biofilm Formation of Acidophilic Mineral-Oxidizing Bacteria on Pyrite, in Advanced Materials Research (2015) 118-122.
- [14] Y. Ma, and C. Lin, Microbial Oxidation of Fe^{2+} and Pyrite Exposed to Flux of Micromolar H_2O_2 in Acidic Media. Scientific Reports, 3 (2013) 1979.

- [15] J.R. Stone and S. Yang, Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal, 8 (2006) 243-70.
- [16] D.R. Crawford and K.J. Davies, Adaptive response and oxidative stress. Environmental Health Perspectives, 102 (1994) 25-28.