26 research outputs found

    The EUV Emission in Comet-Solar Corona Interactions

    Get PDF
    The Atmospheric Imaging Assembly (AlA) on the Solar Dynamics Observatory (SDO) viewed a comet as it passed through the solar corona on 2011 July 5. This was the first sighting of a comet by a EUV telescope. For 20 minutes, enhanced emission in several of the AlA wavelength bands marked the path of the comet. We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Water ice in the comet rapidly sublimates as it approaches the Sun. This water vapor is then photodissociated, primarily by Ly-alpha, by the solar radiation field to create atomic Hand O. Other molecules present in the comet also evaporate and dissociate to give atomic Fe and other metals. Subsequent ionization of these atoms can be achieved by a number of means, including photoionization, electron impact, and charge exchange with coronal protons and other highly-charged species. Finally, particles from the cometary atmosphere are thermalized to the background temperature of the corona. Each step could cause emission in the AlA bandpasses. We will report here on their relative contribution to the emission seen in the AlA telescopes

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Workplace risk factors for anxiety and depression in male-dominated industries: a systematic review.

    Get PDF
    Background and Aims: Working conditions are an important health determinant. Employment factors can negatively affect mental health (MH), but there is little research on MH risk factors in male-dominated industries (MDI). Method: A systematic review of risk factors for anxiety and depression disorders in MDI was undertaken. MDI comprised ≥ 70% male workers and included agriculture, construction, mining, manufacturing, transport and utilities. Major electronic databases (CINAHL, Cochrane Library, Informit, PsycINFO, PubMed and Scopus) were searched. Each study was categorised according to National Health and Medical Research Council's hierarchy of evidence and study quality was assessed according to six methodological criteria. Results: Nineteen studies met the inclusion criteria. Four categories of risk were identified: individual factors, team environment, work conditions and work-home interference. The main risk factors associated with anxiety and depression in MDI were poor health and lifestyles, unsupportive workplace relationships, job overload and job demands. Some studies indicated a higher risk of anxiety and depression for blue-collar workers. Conclusion: Substantial gaps exist in the evidence. Studies with stronger methodologies are required. Available evidence suggests that comprehensive primary, secondary and tertiary prevention approaches to address MH risk factors in MDI are necessary. There is a need for organisationally focused workplace MH policies and interventions

    Collisional Evolution of the Inner Zodiacal Cloud

    No full text
    The zodiacal cloud is one of the largest structures in the solar system and strongly governed by meteoroid collisions near the Sun. Collisional erosion occurs throughout the zodiacal cloud, yet it is historically difficult to directly measure and has never been observed for discrete meteoroid streams. After six orbits with Parker Solar Probe (PSP), its dust impact rates are consistent with at least three distinct populations: bound zodiacal dust grains on elliptic orbits (α-meteoroids), unbound β-meteoroids on hyperbolic orbits, and a third population of impactors that may be either direct observations of discrete meteoroid streams or their collisional by-products ("β-streams"). The β-stream from the Geminids meteoroid stream is a favorable candidate for the third impactor population. β-streams of varying intensities are expected to be produced by all meteoroid streams, particularly in the inner solar system, and are a universal phenomenon in all exozodiacal disks. We find the majority of collisional erosion of the zodiacal cloud occurs in the range of 10–20 solar radii and expect this region to also produce the majority of pickup ions due to dust in the inner solar system. A zodiacal erosion rate of at least ∼100 kg s−1 and flux of β-meteoroids at 1 au of (0.4–0.8) × 10−4 m−2 s−1 are found to be consistent with the observed impact rates. The β-meteoroids investigated here are not found to be primarily responsible for the inner source of pickup ions, suggesting nanograins susceptible to electromagnetic forces with radii below ∼50 nm are the inner source of pickup ions. We expect the peak deposited energy flux to PSP due to dust to increase in subsequent orbits, up to 7 times that experienced during its sixth orbit
    corecore