160 research outputs found
Tracking moving targets in wireless sensor networks using extended diffusion strategies of distributed Kalman filter
Using wireless sensor networks to track the position of a moving object in a 3-D spatial model requires precise information of location and speed of the object, which in turn demands for accuracy in state estimation of distributed Kalman filter. In view of reducing the impacts of noise in the dynamic linear system and achieve optimized state estimate, the current study proposes extended strategies of Kalman filter diffusion based on distributed Kalman filter. Through the proposed strategies, each node communicates merely with its neighbor nodes. The data aggregation is done in a set of neighborhood using instructions of recursive Kalman filter iterations with specific weights. The proposed algorithms provide precise state estimates in a moment as global state estimates using various updates at each step. As a simulation study, we applied the algorithms in a network to track the position and speed of a projectile and compared the results with real world circumstances, using the concept of transient mean square deviations of network as a cost function. The results report improvements over the conventional methods in terms of mean square errors
A review and comparison of efficient flooding schemes for on-demand routing protocols on mobile ad hoc networks (MANETs)
Since the basic components of ad hoc wireless networks are mostly battery-operated portable devices, power conservation is one of the central issues of such networks. Power-conservative designs for ad hoc networks pose many challenges due to the lack of central coordination facilities. Existing on-demand routing protocols perform route discovery by flooding the network with a query
message requesting a route to the destination. Flooding is used because of its simplicity and greater success in finding the best route between the source and destination available at that time of route discovery. However, as flooding involves querying all reachable network nodes, frequent flooding can rapidly deplete the energy reserved at each node. In addition to consuming significant portions of the available network bandwidth. Further, as the number of communicating nodes increases, more congestion, contention, and collisions can be expected. This paper reviews and compares approaches for optimizing bandwidth efficiency of route discovery, where several efficient flooding schemes have been presented based on different techniques to solve the problems related with the traditional blind flooding
A proposed cloud-based billers hub using secured e-payments system
Automation of several payment processes from start to end is a challenging task, particularly when multiple payments from online and offline billers are involved. In this paper, we introduced a new aggregator system to combine all billing system types, in which it is possible to pay invoices electronically. The proposed aggregator system was designed to be employed in a cloud-based Billers Hub (CBBH) developed by the central banks. Furthermore, many applications can be realized such as; deposit e-money, withdrawal e-money, and other applications. A Gateway translator is used to apply authentication rules, security, and privacy. The proposed system was employed in the Jordanian payment gateway and successfully fulfills its purpose
Data from: Children with type 1 diabetes who experienced a honeymoon phase had significantly lower LDL cholesterol 5 years after diagnosis
Manuscript abstract:
Importance: Landmark studies showed that partial clinical remission in new-onset type 1 diabetes is associated with reduced prevalence of long-term complications, but early clinical indicators of this favorable outcome are poorly characterized.
Aim: To determine if there were any differences in lipid parameters, especially LDL-cholesterol, between remitters and non-remitters 4 to 5 years after the diagnosis of type 1 diabetes after controlling for hemoglobin A1c, body mass index, and pubertal status.
Subjects and Methods: A longitudinal retrospective cohort study of 123 subjects of mean age 11.9 ± 2.9 years, [male 11.7 ± 2.9 years, (n=55); female 12.0 ± 2.9 years, (n=68), p=0.60] with type 1 diabetes of 4-5 years duration. Anthropometric and biochemical data were collected at the 4th or 5th year after diagnosis in line with the American Diabetes Association recommendation to initiate screening for complications in children either at the beginning of puberty or 4-5 years after diagnosis. Puberty was defined by Tanner stages II-V. Partial clinical remission was defined by the gold-standard insulin-dose adjusted hemoglobin A1c (IDAA1c) of ≤9.
Results: There were 44 (35.8%) remitters (age 13.0 ± 2.5y; male 52.3%). Both the total cholesterol and LDL-cholesterol were significantly lower in remitters compared to non-remitters: LDL-C: 78.8 ± 28.7 mg/dL vs. 91.6 ± 26.5 mg/dL, p=0.023; and total cholesterol: 151.5 ± 32.6 mg/dL vs. 167.0 ± 29.6 mg/dL, p=0.015. Other lipid fractions were similar between the groups. There were no differences between the groups for glycemic control, body mass index z score, thyroid function, celiac disease occurrence, or vitamin D status. Though a greater number of remitters were in puberty compared to non-remitters (86.4% vs. 60.8%, p=0.006), LDL-C concentration was similar in prepubertal remitters vs. non-remitters (p=0.93), but was significantly lower in remitters in puberty compared to non-remitters in puberty (p=0.018) after adjusting for age and duration of diabetes.
Conclusions: Children with type 1 diabetes who underwent a honeymoon phase had significantly lower LDL cholesterol 5 years after diagnosis regardless of their age, glycemic control, adiposity, or pubertal status. This early divergence in lipidemia may explain the dichotomy in the prevalence of long-term complication in type 1 diabetes between remitters and non-remitters. It also offers a pathway for targeted lipid monitoring in type 1 diabetes, by establishing non-remission as a non-modifiable risk factor for vascular complication in type 1 diabetes
Children with type 1 diabetes who experienced a honeymoon phase had significantly lower LDL cholesterol 5 years after diagnosis
IMPORTANCE: Landmark studies showed that partial clinical remission in new-onset type 1 diabetes is associated with reduced prevalence of long-term complications, but early clinical indicators of this favorable outcome are poorly characterized.
AIM: To determine if there were any differences in lipid parameters, especially LDL-cholesterol, between remitters and non-remitters 4 to 5 years after the diagnosis of type 1 diabetes after controlling for hemoglobin A1c, body mass index, and pubertal status.
SUBJECTS AND METHODS: A longitudinal retrospective cohort study of 123 subjects of mean age 11.9 +/- 2.9 years, [male 11.7 +/- 2.9 years, (n = 55); female 12.0 +/- 2.9 years, (n = 68), p = 0.60] with type 1 diabetes of 4-5 years duration. Anthropometric and biochemical data were collected at the 4th or 5th year after diagnosis in line with the American Diabetes Association recommendation to initiate screening for complications in children either at the beginning of puberty or 4-5 years after diagnosis. Puberty was defined by Tanner stages II-V. Partial clinical remission was defined by the gold-standard insulin-dose adjusted hemoglobin A1c (IDAA1c) of \u3c /=9.
RESULTS: There were 44 (35.8%) remitters (age 13.0 +/- 2.5y; male 52.3%). Both the total cholesterol and LDL-cholesterol were significantly lower in remitters compared to non-remitters: LDL-C: 78.8 +/- 28.7 mg/dL vs. 91.6 +/- 26.5 mg/dL, p = 0.023; and total cholesterol: 151.5 +/- 32.6 mg/dL vs. 167.0 +/- 29.6 mg/dL, p = 0.015. Other lipid fractions were similar between the groups. There were no differences between the groups for glycemic control, body mass index z score, thyroid function, celiac disease occurrence, or vitamin D status. A greater number of remitters were in puberty compared to non-remitters (86.4% vs. 60.8%, p = 0.006). LDL-C concentration was similar in prepubertal remitters vs. non-remitters (p = 0.93), but was significantly lower in remitters in puberty compared to non-remitters in puberty (p = 0.018) after adjusting for age and duration of diabetes.
CONCLUSIONS: Children with type 1 diabetes who underwent a honeymoon phase had significantly lower LDL cholesterol 5 years after diagnosis. This early divergence in lipidemia may explain the dichotomy in the prevalence of long-term complication in type 1 diabetes between remitters and non-remitters. It also offers a pathway for targeted lipid monitoring in type 1 diabetes, by establishing non-remission as a non-modifiable risk factor for vascular complication in type 1 diabetes
Continuous glucose monitoring reduces pubertal hyperglycemia of type 1 diabetes
Background:
Physiologic hyperglycemia of puberty is a major contributor to poor glycemic control in youth with type 1 diabetes (T1D). This study\u27s aim was to determine the effectiveness of continuous glucose monitoring (CGM) to improve glycemic control in pubertal youth with T1D compared to a non-CGM cohort after controlling for age, sex, BMI, duration, and insulin delivery methodology. The hypothesis is that consistent CGM use in puberty improves compliance with diabetes management, leading to increased percentage (%) time in range (TIR70-180 mg/dL) of glycemia, and lowering of HbA1c.
Methods
A longitudinal, retrospective, case-controlled study of 105 subjects consisting of 51 T1D controls (60.8% male) age 11.5 +/- 3.8 y; and 54 T1D subjects (48.1% male) age 11.1 +/- 5.0 y with confirmed CGM use for 12 months. Pubertal status was determined by Tanner staging. Results were adjusted for baseline HbA1c and diabetes duration.
Results
HbA1c was similar between the controls and the CGM group at baseline: 8.2 +/- 1.1% vs 8.3 +/- 1.2%, p=0.48 respectively; but was significantly lower in the CGM group 12 months later, 8.2 +/- 1.1% vs. 8.7 +/- 1.4%, p=0.035. Longitudinal change in HbA1c was similar in the prepubertal cohort between the control- and CGM groups: -0.17 +/- 0.98% vs. 0.38 +/- 1.5%, p=0.17. In contrast, HbA1c increased with advancing age and pubertal status in the pubertal controls but not in the pubertal CGM group: 0.55 +/- 1.4 vs -0.22 +/- 1.1%, p=0.020. Percent TIR was inversely related to HbA1c in the CGM group, r=-0.6, p=0.0004, for both prepubertal and pubertal subjects.
Conclusions
CGM use significantly improved glycemic control in pubertal youth with T1D compared to non-CGM users
Exploring biochar and fishpond sediments potential to change soil phosphorus fractions and availability
Phosphorus (P) availability in soil is paradoxical, with a significant portion of applied P accumulating in the soil, potentially affecting plant production. The impact of biochar (BR) and fishpond sediments (FPS) as fertilizers on P fixation remains unclear. This study aimed to determine the optimal ratio of BR, modified biochar (MBR), and FPS as fertilizer replacements. A pot experiment with maize evaluated the transformation of P into inorganic (Pi) and organic (Po) fractions and their contribution to P uptake. Different percentages of FPS, BR, and MBR were applied as treatments (T1–T7), T1 [(0.0)], T2 [FPS (25.0%)], T3 [FPS (25.0%) + BR (1%)], T [FPS (25%) +MBR (3%)], T5 [FPS (35%)], T6 [FPS (35%) +BR (1%)], and T7 [FPS (35%) + MBR (1%)]. Using the modified Hedley method and the Tiessen and Moir fractionation scheme, P fractions were determined. Results showed that various rates of MBR, BR, and FPS significantly increased labile and moderately labile P fractions (NaHCO3-Pi, NaHCO3-Po, HClD-Pi, and HClC-Pi) and residual P fractions compared with the control (T1). Positive correlations were observed between P uptake, phosphatase enzyme activity, and NaHCO3-Pi. Maximum P uptake and phosphatase activity were observed in T6 and T7 treatments. The addition of BR, MBR, and FPS increased Po fractions. Unlike the decline in NaOH-Po fraction, NaHCO3-Po and HClc-Po fractions increased. All Pi fractions, particularly apatite (HClD-Pi), increased across the T1–T7 treatments. HClD-Pi was the largest contributor to total P (40.7%) and can convert into accessible P over time. The T5 treatment showed a 0.88% rise in residual P. HClD-Pi and residual P fractions positively correlated with P uptake, phosphatase activity, NaOH-Pi, and NaOH-Po moderately available fractions. Regression analysis revealed that higher concentrations of metals such as Ca, Zn, and Cr significantly decreased labile organic and inorganic P fractions (NaHCO3-Pi, R2 = 0.13, 0.36, 0.09) and their availability (NaHCO3-Po, R2 = 0.01, 0.03, 0.25). Excessive solo BR amendments did not consistently increase P availability, but optimal simple and MBR increased residual P contents in moderately labile and labile forms (including NaOH-Pi, NaHCO3-Pi, and HClD-Pi). Overall, our findings suggest that the co-addition of BR and FPS can enhance soil P availability via increasing the activity of phosphatase enzyme, thereby enhancing plant P uptake and use efficiency, which eventually maintains the provision of ecosystem functions and services
Single CD28 stimulation induces stable and polyclonal expansion of human regulatory T cells
Contains fulltext :
170288.pdf (publisher's version ) (Open Access)CD4+FOXP3+ Treg are essential for immune tolerance. Phase-1 clinical trials of Treg-therapy to treat graft-versus-host-disease reported safety and potential therapeutic efficacy. Treg-based trials have started in organ-transplant patients. However, efficient ex vivo expansion of a stable Treg population remains a challenge and exploring novel ways for Treg expansion is a pre-requisite for successful immunotherapy. Based on the recent finding that CD28-signaling is crucial for survival and proliferation of mouse Treg, we studied single-CD28 stimulation of human Treg, without T cell receptor stimulation. Single-CD28 stimulation of human Treg in the presence of recombinant human IL-2(rhIL-2), as compared to CD3/CD28/rhIL-2 stimulation, led to higher expression levels of FOXP3. Although the single-CD28 expanded Treg population was equally suppressive to CD3/CD28 expanded Treg, pro-inflammatory cytokine (IL-17A/IFNgamma) production was strongly inhibited, indicating that single-CD28 stimulation promotes Treg stability. As single-CD28 stimulation led to limited expansion rates, we examined a CD28-superagonist antibody and demonstrate a significant increased Treg expansion that was more efficient than standard anti-CD3/CD28-bead stimulation. CD28-superagonist stimulation drove both naive and memory Treg proliferation. CD28-superagonist induction of stable Treg appeared both PI3K and mTOR dependent. Regarding efficient and stable expansion of Treg for adoptive Treg-based immunotherapy, application of CD28-superagonist stimulation is of interest
Inflammation-Driven Reprogramming of CD4+Foxp3+ Regulatory T Cells into Pathogenic Th1/Th17 T Effectors Is Abrogated by mTOR Inhibition in vivo
While natural CD4+Foxp3+ regulatory T (nTREG) cells have long been viewed as a stable and distinct lineage that is committed to suppressive functions in vivo, recent evidence supporting this notion remains highly controversial. We sought to determine whether Foxp3 expression and the nTREG cell phenotype are stable in vivo and modulated by the inflammatory microenvironment. Here, we show that Foxp3+ nTREG cells from thymic or peripheral lymphoid organs reveal extensive functional plasticity in vivo. We show that nTREG cells readily lose Foxp3 expression, destabilizing their phenotype, in turn, enabling them to reprogram into Th1 and Th17 effector cells. nTREG cell reprogramming is a characteristic of the entire Foxp3+ nTREG population and the stable Foxp3NEG TREG cell phenotype is associated with a methylated foxp3 promoter. The extent of nTREG cell reprogramming is modulated by the presence of effector T cell-mediated signals, and occurs independently of variation in IL-2 production in vivo. Moreover, the gut microenvironment or parasitic infection favours the reprogramming of Foxp3+ TREG cells into effector T cells and promotes host immunity. IL-17 is predominantly produced by reprogrammed Foxp3+ nTREG cells, and precedes Foxp3 down-regulation, a process accentuated in mesenteric sites. Lastly, mTOR inhibition with the immunosuppressive drug, rapamycin, stabilizes Foxp3 expression in TREG cells and strongly inhibits IL-17 but not RORγt expression in reprogrammed Foxp3− TREG cells. Overall, inflammatory signals modulate mTOR signalling and influence the stability of the Foxp3+ nTREG cell phenotype
MAGE-A protein and MAGE-A10 gene expressions in liver metastasis in patients with stomach cancer
Tumour samples from 71 patients with stomach cancer, 41 patients with liver metastasis (group A) and 15 patients each in stages II–IV (group B) and stage I (group C) without liver metastasis were analysed. MAGE-A protein expression was evaluated by immunohistochemistry using a 6C1 monoclonal antibody and MAGE-A10 mRNA expression was detected by highly sensitive in situ hybridisation using a cRNA probe. Expressions of MAGE-A protein and MAGE-A10 mRNA in group A were detected in 65.9 and 80.5%, respectively. Both protein and gene showed significantly higher expression in group A than those in groups B (6.7, 26.7%) and C (0, 0%) (P=0.0003, P=<0.0001, respectively). MAGE-A10 mRNA expression in liver metastasis was found in eight (88.9%) out of nine patients. The concordant rate between MAGE-A family protein expression and MAGE-A10 mRNA expression in the primary sites was 81.7% (P<0.0001). MAGE-A10 gene expression was associated with reduced survival duration. The results of this study suggest that MAGE-A10 is a possible target in active immunotherapy for advanced stomach cancer
- …