1,018 research outputs found
Index
The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, the basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell–Jüttner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.Original Publication: Antoine Bret, Laurent Gremillet and Mark Eric Dieckmann, Multidimensional electron beam-plasma instabilities in the relativistic regime, 2010, Physics of Plasmas, (17), 12, 120501-1-120501-36. http://dx.doi.org/10.1063/1.3514586 Copyright: American Institute of Physics http://www.aip.org/</p
Relativistic particle acceleration in developing Alfv\'{e}n turbulence
A new particle acceleration process in a developing Alfv\'{e}n turbulence in
the course of successive parametric instabilities of a relativistic pair plasma
is investigated by utilyzing one-dimensional electromagnetic full particle
code. Coherent wave-particle interactions result in efficient particle
acceleration leading to a power-law like energy distribution function. In the
simulation high energy particles having large relativistic masses are
preferentially accelerated as the turbulence spectrum evolves in time. Main
acceleration mechanism is simultaneous relativistic resonance between a
particle and two different waves. An analytical expression of maximum
attainable energy in such wave-particle interactions is derived.Comment: 15 pages, 9 figures, 1 tabl
Diffusive Shock Acceleration with Magnetic Amplification by Non-resonant Streaming Instability in SNRs
We investigate the diffusive shock acceleration in the presence of the
non-resonant streaming instability introduced by Bell (2004). The numerical MHD
simulations of the magnetic field amplification combined with the analytical
treatment of cosmic ray acceleration permit us to calculate the maximum energy
of particles accelerated by high-velocity supernova shocks. The estimates for
Cas A, Kepler, SN1006, and Tycho historical supernova remnants are given. We
also found that the amplified magnetic field is preferentially oriented
perpendicular to the shock front downstream of the fast shock. This explains
the origin of the radial magnetic fields observed in young supernova remnants.Comment: 18 pages, 9 figures, accepted to Ap
Nonthermal Bremsstrahlung and Hard X-ray Emission from Clusters of Galaxies
We have calculated nonthermal bremsstrahlung (NTB) models for the hard X-ray
(HXR) tails recently observed by BeppoSAX in clusters of galaxies. In these
models, the HXR emission is due to suprathermal electrons with energies of
about 10-200 keV. Under the assumption that the suprathermal electrons form
part of a continuous spectrum of electrons including highly relativistic
particles, we have calculated the inverse Compton (IC) extreme ultraviolet
(EUV), HXR, and radio synchrotron emission by the extensions of the same
populations. For accelerating electron models with power-law momentum spectra
(N[p] propto p^{- mu}) with mu <~ 2.7, which are those expected from strong
shock acceleration, the IC HXR emission exceeds that due to NTB. Thus, these
models are only of interest if the electron population is cut-off at some upper
energy <~1 GeV. Similarly, flat spectrum accelerating electron models produce
more radio synchrotron emission than is observed from clusters if the ICM
magnetic field is B >~ 1 muG. The cooling electron model produces vastly too
much EUV emission as compared to the observations of clusters. We have compared
these NTB models to the observed HXR tails in Coma and Abell 2199. The NTB
models require a nonthermal electron population which contains about 3% of the
number of electrons in the thermal ICM. If the suprathermal electron population
is cut-off at some energy above 100 keV, then the models can easily fit the
observed HXR fluxes and spectral indices in both clusters. For accelerating
electron models without a cutoff, the electron spectrum must be rather steep >~
2.9.Comment: Accepted for publication in the Astrophysical Journal. 10 pages with
5 embedded Postscript figures in emulateapj.sty. An abbreviated abstract
follow
A New Measurement of Cosmic Ray Composition at the Knee
The Dual Imaging Cerenkov Experiment (DICE) was designed and operated for
making elemental composition measurements of cosmic rays near the knee of the
spectrum at several PeV. Here we present the first results using this
experiment from the measurement of the average location of the depth of shower
maximum, , in the atmosphere as a function of particle energy. The value
of near the instrument threshold of ~0.1 PeV is consistent with
expectations from previous direct measurements. At higher energies there is
little change in composition up to ~5 PeV. Above this energy is deeper
than expected for a constant elemental composition implying the overall
elemental composition is becoming lighter above the knee region. These results
disagree with the idea that cosmic rays should become on average heavier above
the knee. Instead they suggest a transition to a qualitatively different
population of particles above 5 PeV.Comment: 7 pages, LaTeX, two eps figures, aas2pp4.sty and epsf.sty included,
accepted by Ap.J. Let
Analytic solution for nonlinear shock acceleration in the Bohm limit
The selfconsistent steady state solution for a strong shock, significantly
modified by accelerated particles is obtained on the level of a kinetic
description, assuming Bohm-type diffusion. The original problem that is
commonly formulated in terms of the diffusion-convection equation for the
distribution function of energetic particles, coupled with the thermal plasma
through the momentum flux continuity equation, is reduced to a nonlinear
integral equation in one variable. Its solution provides selfconsistently both
the particle spectrum and the structure of the hydrodynamic flow. A critical
system parameter governing the acceleration process is found to be , where , with a suitably
normalized injection rate , the Mach number M >> 1, and the cut-off
momentum . We particularly focus on an efficient solution, in which
almost all the energy of the flow is converted into a few energetic particles.
It was found that (i) for this efficient solution (or, equivalently, for
multiple solutions) to exist, the parameter
must exceed a critical value ( is the injection
momentum), (ii) the total shock compression ratio r increases with M and
saturates at a level that scales as $ r \propto \Lambda_1 (iii) the downstream
power-law spectrum has the universal index q=3.5 over a broad momentum range.
(iv) completely smooth shock transitions do not appear in the steady state
kinetic description.Comment: 39 pages, 3 PostScript figures, uses aasms4.sty, to appear in Aug.
20, 1997 issue ApJ, vol. 48
High Energy Cosmic Rays From Supernovae
Cosmic rays are charged relativistic particles that reach the Earth with
extremely high energies, providing striking evidence of the existence of
effective accelerators in the Universe. Below an energy around
eV cosmic rays are believed to be produced in the Milky Way while above that
energy their origin is probably extragalactic. In the early '30s supernovae
were already identified as possible sources for the Galactic component of
cosmic rays. After the '70s this idea has gained more and more credibility
thanks to the the development of the diffusive shock acceleration theory, which
provides a robust theoretical framework for particle energization in
astrophysical environments. Afterwards, mostly in recent years, much
observational evidence has been gathered in support of this framework,
converting a speculative idea in a real paradigm. In this Chapter the basic
pillars of this paradigm will be illustrated. This includes the acceleration
mechanism, the non linear effects produced by accelerated particles onto the
shock dynamics needed to reach the highest energies, the escape process from
the sources and the transportation of cosmic rays through the Galaxy. The
theoretical picture will be corroborated by discussing several observations
which support the idea that supernova remnants are effective cosmic ray
factories.Comment: Final draft of a chapter in "Handbook of Supernovae" edited by Athem
W. Alsabti and Paul Murdi
On the nonthermal X-ray emission in blazar jets
We consider particle acceleration to high energy via diffusive shock
acceleration in a simple, self-consistent shock in jet model for blazars.
Electrons are assumed to be accelerated at a shock front in relativistic jets
and radiate synchrotron emission in a post-shock region. The full time, space
and momentum dependence of the electron distribution function is used for a
calculation of the nonthermal synchrotron spectra. We discuss the evolution of
the spectral index by varying the rate at which particles enter the
acceleration process. The results indicate that the synchrotron spectral index
displays a characteristic looplike behaviour with intensity (as has been
observed in several blazars), where the orientation of the loop depends on
whether the acceleration time scale is comparable to the synchrotron cooling
time scale or not. We show that our model provides a good fit to the observed
evolution of the spectral index of Mkn 421 during a flare in 1994.Comment: 6 pages, 3 figures, conference proceedin
- …
