12,665 research outputs found
ENSO suppression due to weakening of the North Atlantic thermohaline circulation
Changes of the North Atlantic thermohaline circulation (THC) excite wave patterns that readjust the thermocline globally. This paper examines the impact of a freshwater-induced THC shutdown on the depth of the Pacific thermocline and its subsequent modification of the El Niño–Southern Oscillation (ENSO) variability using an intermediate-complexity global coupled atmosphere–ocean–sea ice model and an intermediate ENSO model, respectively. It is shown by performing a numerical eigenanalysis and transient simulations that a THC shutdown in the North Atlantic goes along with reduced ENSO variability because of a deepening of the zonal mean tropical Pacific thermocline. A transient simulation also exhibits abrupt changes of ENSO behavior, depending on the rate of THC change. The global oceanic wave adjustment mechanism is shown to play a key role also on multidecadal time scales. Simulated multidecadal global sea surface temperature (SST) patterns show a large degree of similarity with previous climate reconstructions, suggesting that the observed pan-oceanic variability on these time scales is brought about by oceanic waves and by atmospheric teleconnections
Eigensystem realization algorithm modal identification experiences with mini-mast
This paper summarizes work performed under a collaborative research effort between the National Aeronautics and Space Administration (NASA) and the German Aerospace Research Establishment (DLR, Deutsche Forschungsanstalt fur Luft- und Raumfahrt). The objective is to develop and demonstrate system identification technology for future large space structures. Recent experiences using the Eigensystem Realization Algorithm (ERA), for modal identification of Mini-Mast, are reported. Mini-Mast is a 20 m long deployable space truss used for structural dynamics and active vibration-control research at the Langley Research Center. A comprehensive analysis of 306 frequency response functions (3 excitation forces and 102 displacement responses) was performed. Emphasis is placed on two topics of current research: (1) gaining an improved understanding of ERA performance characteristics (theory vs. practice); and (2) developing reliable techniques to improve identification results for complex experimental data. Because of nonlinearities and numerous local modes, modal identification of Mini-Mast proved to be surprisingly difficult. Methods were available, ERA, for obtaining detailed, high-confidence results
Entropic Stabilization and Retrograde Solubility in Zn4Sb3
Zn4Sb3 is shown to be entropically stabilized versus decomposition to Zn and
ZnSb though the effects of configurational disorder and phonon free energy.
Single phase stability is predicted for a range of compositions and
temperatures. Retrograde solubility of Zn is predicted on the two-phase
boundary region between Zn4Sb3 and Zn. The complex temperature dependent
solubility can be used to explain the variety of nanoparticle formation
observed in the system: formation of ZnSb on the Sb rich side, Zn on the far Zn
rich side and nano-void formation due to Zn precipitates being reabsorbed at
lower temperatures.Comment: 5 pages, 5 figure
Clinical proteomics for precision medicine: the bladder cancer case
Precision medicine can improve patient management by guiding therapeutic decision based on molecular characteristics. The concept has been extensively addressed through the application of –omics based approaches. Proteomics attract high interest, as proteins reflect a “real-time” dynamic molecular phenotype. Focusing on proteomics applications for personalized medicine, a literature search was conducted to cover: a) disease prevention, b) monitoring/ prediction of treatment response, c) stratification to guide intervention and d) identification of drug targets. The review indicates the potential of proteomics for personalized medicine by also highlighting multiple challenges to be addressed prior to actual implementation. In oncology, particularly bladder cancer, application of precision medicine appears especially promising. The high heterogeneity and recurrence rates together with the limited treatment options, suggests that earlier and more efficient intervention, continuous monitoring and the development of alternative therapies could be accomplished by applying proteomics-guided personalized approaches. This notion is backed by studies presenting biomarkers that are of value in patient stratification and prognosis, and by recent studies demonstrating the identification of promising therapeutic targets. Herein, we aim to present an approach whereby combining the knowledge on biomarkers and therapeutic targets in bladder cancer could serve as basis towards proteomics- guided personalized patient management
Properties of - and -modes in hydromagnetic turbulence
With the ultimate aim of using the fundamental or -mode to study
helioseismic aspects of turbulence-generated magnetic flux concentrations, we
use randomly forced hydromagnetic simulations of a piecewise isothermal layer
in two dimensions with reflecting boundaries at top and bottom. We compute
numerically diagnostic wavenumber-frequency diagrams of the vertical velocity
at the interface between the denser gas below and the less dense gas above. For
an Alfv\'en-to-sound speed ratio of about 0.1, a 5% frequency increase of the
-mode can be measured when -, where is the
horizontal wavenumber and is the pressure scale height at the
surface. Since the solar radius is about 2000 times larger than ,
the corresponding spherical harmonic degree would be 6000-8000. For weaker
fields, a -dependent frequency decrease by the turbulent motions becomes
dominant. For vertical magnetic fields, the frequency is enhanced for
, but decreased relative to its nonmagnetic value for
.Comment: 17 pages, 22 figures, Version accepted in MNRA
The gauge structure of generalised diffeomorphisms
We investigate the generalised diffeomorphisms in M-theory, which are gauge
transformations unifying diffeomorphisms and tensor gauge transformations.
After giving an En(n)-covariant description of the gauge transformations and
their commutators, we show that the gauge algebra is infinitely reducible,
i.e., the tower of ghosts for ghosts is infinite. The Jacobiator of generalised
diffeomorphisms gives such a reducibility transformation. We give a concrete
description of the ghost structure, and demonstrate that the infinite sums give
the correct (regularised) number of degrees of freedom. The ghost towers belong
to the sequences of rep- resentations previously observed appearing in tensor
hierarchies and Borcherds algebras. All calculations rely on the section
condition, which we reformulate as a linear condition on the cotangent
directions. The analysis holds for n < 8. At n = 8, where the dual gravity
field becomes relevant, the natural guess for the gauge parameter and its
reducibility still yields the correct counting of gauge parameters.Comment: 24 pp., plain tex, 1 figure. v2: minor changes, including a few added
ref
Development of an improved surface preparation for titanium bonding and titanium graphite laminates for aircraft and space vehicle applications
A Navier Stokes Phase Field Crystal Model for Colloidal Suspensions
We develop a fully continuous model for colloidal suspensions with
hydrodynamic interactions. The Navier Stokes Phase Field Crystal (NS-PFC) model
combines ideas of dynamic density functional theory with particulate flow
approaches and is derived in detail and related to other dynamic density
functional theory approaches with hydrodynamic interactions. The derived system
is numerically solved using adaptive finite elements and used to analyse
colloidal crystallization in flowing environments demonstrating a strong
coupling in both directions between the crystal shape and the flow field. We
further validate the model against other computational approaches for
particulate flow systems for various colloidal sedimentation problems
Tuning the dipolar interaction in quantum gases
We have studied the tunability of the interaction between permanent dipoles
in Bose-Einstein condensates. Based on time-dependent control of the anisotropy
of the dipolar interaction, we show that even the very weak magnetic dipole
coupling in alkali gases can be used to excite collective modes. Furthermore,
we discuss how the effective dipolar coupling in a Bose-Einstein condensate can
be tuned from positive to negative values and even switched off completely by
fast rotation of the orientation of the dipoles.Comment: 4 pages, 3 figures. Submitted to PRL. (v3: Figure 3 replaced
- …
