1,400 research outputs found
Innovative technologies for terrestrial remote sensing
[In lieu of abstract, extract from first page]
Characterizing and monitoring terrestrial, or land, surface features, such as forests, deserts, and cities, are fundamental and continuing goals of Earth Observation (EO). EO imagery and related technologies are essential for increasing our scientific understanding of environmental processes, such as carbon capture and albedo change, and to manage and safeguard environmental resources, such as tropical forests, particularly over large areas or the entire globe. This measurement or observation of some property of the land surface is central to a wide range of scientific investigations and industrial operations, involving individuals and organizations from many different backgrounds and disciplines. However, the process of observing the land provides a unifying theme for these investigations, and in practice there is much consistency in the instruments used for observation and the techniques used to map and model the environmental phenomena of interest. There is therefore great potential benefit in exchanging technological knowledge and experience among the many and diverse members of the terrestrial EO community
Aspirated capacitor measurements of air conductivity and ion mobility spectra
Measurements of ions in atmospheric air are used to investigate atmospheric
electricity and particulate pollution. Commonly studied ion parameters are (1)
air conductivity, related to the total ion number concentration, and (2) the
ion mobility spectrum, which varies with atmospheric composition. The physical
principles of air ion instrumentation are long-established. A recent
development is the computerised aspirated capacitor, which measures ions from
(a) the current of charged particles at a sensing electrode, and (b) the rate
of charge exchange with an electrode at a known initial potential, relaxing to
a lower potential. As the voltage decays, only ions of higher and higher
mobility are collected by the central electrode and contribute to the further
decay of the voltage. This enables extension of the classical theory to
calculate ion mobility spectra by inverting voltage decay time series. In
indoor air, ion mobility spectra determined from both the novel voltage decay
inversion, and an established voltage switching technique, were compared and
shown to be of similar shape. Air conductivities calculated by integration
were: 5.3 +- 2.5 fS/m and 2.7 +- 1.1 fS/m respectively, with conductivity
determined to be 3 fS/m by direct measurement at a constant voltage.
Applications of the new Relaxation Potential Inversion Method (RPIM) include
air ion mobility spectrum retrieval from historical data, and computation of
ion mobility spectra in planetary atmospheres.Comment: To be published in Review of Scientific Instrument
Are osseous artefacts a window to perishable material culture? Implications of an unusually complex bone tool from the Late Pleistocene of East Timor
We report the discovery of an unusually complex and regionally unique bone artefact in a Late Pleistocene archaeological assemblage (c. 35 ka [thousands of years ago]) from the site of Matja Kuru 2 on the island of Timor, in Wallacea. The artefact is interpreted as the broken butt of a formerly hafted projectile point, and it preserves evidence of a complex hafting mechanism including insertion into a shaped or split shaft, a complex pattern of binding including lateral stabilization of the cordage within a bilateral series of notches, and the application of mastic at several stages in the hafting process. The artefact provides the earliest direct evidence for the use of this combination of hafting technologies in the wider region of Southeast Asia, Wallacea, Melanesia and Australasia, and is morphologically unparallelled in deposits of any age. By contrast, it bears a close morphological resemblance to certain bone artefacts from the Middle Stone Age of Africa and South Asia. Examination of ethnographic projectile technology from the region of Melanesia and Australasia shows that all of the technological elements observed in the Matja Kuru 2 artefact were in use historically in the region, including the unusual feature of bilateral notching to stabilize a hafted point. This artefact challenges the notion that complex bone-working and hafting technologies were a relatively late innovation in this part of the world. Moreover, its regional uniqueness encourages us to abandon the perception of bone artefacts as a discrete class of material culture, and to adopt a new interpretative framework in which they are treated as manifestations of a more general class of artefacts that more typically were produced on perishable raw materials including wood
Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation.
Gasdermin E (GSDME/DFNA5) cleavage by caspase-3 liberates the GSDME-N domain, which mediates pyroptosis by forming pores in the plasma membrane. Here we show that GSDME-N also permeabilizes the mitochondrial membrane, releasing cytochrome c and activating the apoptosome. Cytochrome c release and caspase-3 activation in response to intrinsic and extrinsic apoptotic stimuli are significantly reduced in GSDME-deficient cells comparing with wild type cells. GSDME deficiency also accelerates cell growth in culture and in a mouse model of melanoma. Phosphomimetic mutation of the highly conserved phosphorylatable Thr6 residue of GSDME, inhibits its pore-forming activity, thus uncovering a potential mechanism by which GSDME might be regulated. Like GSDME-N, inflammasome-generated gasdermin D-N (GSDMD-N), can also permeabilize the mitochondria linking inflammasome activation to downstream activation of the apoptosome. Collectively, our results point to a role of gasdermin proteins in targeting the mitochondria to promote cytochrome c release to augment the mitochondrial apoptotic pathway
Surface Visualisation of Tissue Interfaces by Scanning Electron Microscopy. Methods for Exposure of the Basal Lamina and Associated Structures in Human Amnion
Tissue interfaces such as basal lamina have been traditionally investigated in transmission electron microscopy by sections cut vertical to the lamina, presenting information restricted to a single ultrathin plane. In order to overcome this limitation, a methodology for surface visualisation of the underside cell membranes of the amniotic epithelium, the upper and lower basal lamina surfaces, and their relationship to the stromal collagen has been devised. This involves alkaline, detergent or enzymatic loosening and/or removal of the epithelial monolayer prior to fixation, followed by dry fracture after critical point drying. In this way we have visualised large areas of all interfaces and the inter-relationships between these elements during the process of stromal collagen production by the amniotic epithelial cells
Tropical Peatland Vegetation Structure and Biomass: Optimal Exploitation of Airborne Laser Scanning
Accurate estimation of above ground biomass (AGB) is required to better understand the variability and dynamics of tropical peat swamp forest (PSF) ecosystem function and resilience to disturbance events. The objective of this work is to examine the relationship between tropical PSF AGB and small-footprint airborne Light Detection and Ranging (LiDAR) discrete return (DR) and full waveform (FW) derived metrics, with a view to establishing the optimal use of this technology in this environment. The study was undertaken in North Selangor peat swamp forest (NSPSF) reserve, Peninsular Malaysia. Plot-based multiple regression analysis was performed to established the strongest predictive models of PSF AGB using DR metrics (only), FW metrics (only), and a combination of DR and FW metrics. Overall, the results demonstrate that a Combination-model, coupling the benefits derived from both DR and FW metrics, had the best performance in modelling AGB for tropical PSF (R2 = 0.77, RMSE = 36.4, rRMSE = 10.8%); however, no statistical difference was found between the rRMSE of this model and the best models using only DR and FW metrics. We conclude that the optimal approach to using airborne LiDAR for the estimation of PSF AGB is to use LiDAR metrics that relate to the description of the mid-canopy. This should inform the use of remote sensing in this ecosystem and how innovation in LiDAR-based technology could be usefully deployed
Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: Interactions between forest type and peat moisture conditions
Climate warming is likely to increase carbon dioxide (CO2) and methane (CH4) emissions from tropical wetlands by stimulating microbial activity, but the magnitude of temperature response of these CO2 and CH4 emissions, as well as variation in temperature response among forest types, is poorly understood. This limits the accuracy of predictions of future ecosystem feedbacks on the climate system, which is a serious knowledge gap as these tropical wetland ecosystems represent a very large source of greenhouse gas emissions (e.g. two-thirds of CH4 emissions from natural wetlands are estimated to be from tropical systems). In this study, we experimentally manipulated temperatures and moisture conditions in peat collected from different forest types in lowland neotropical peatlands in Panama and measured how this impacted ex-situ CO2 and CH4 emissions. The greatest temperature response was found for anaerobic CH4 production (Q10 = 6.8), and CH4 consumption (mesic conditions, Q10 = 2.7), while CO2 production showed a weaker temperature response (Q10 2 production was found under flooded oxic conditions. Net emissions of CO2 and CH4 were greatest from palm forest under all moisture treatments. Furthermore, the temperature response of CH4 emissions differed among dominant vegetation types with the strongest response at palm forest sites where fluxes increased from 42 ± 25 to 2166 ± 842 ng CH4 g−1 h−1 as temperatures were raised from 20 to 35 °C. We conclude that CH4 fluxes are likely to be more strongly impacted by higher temperatures than CO2 fluxes but that responses may differ substantially among forest types. Such differences in temperature response among forest types (e.g. palm vs evergreen broad leaved forest types) need to be considered when predicting ecosystem greenhouse gas responses under future climate change scenarios
Poison sedge can kill stock
POISON SEDGE was first suspected of being toxic to livestock in Western Australia nearly 80 years ago.
Sudden deaths of sheep grazing areas on which poison sedge grew have been reported from many regions from Geraldton to Scott River.
This article reports a case of poisoning in the field, and the experimental reproduction of poison sedge toxicity in pen-fed sheep
Coevolution of relative brain size and life expectancy in parrots
Previous studies have demonstrated a correlation between longevity and brain size in a variety of taxa. Little research has been devoted to understanding this link in parrots; yet parrots are well-known for both their exceptionally long lives and cognitive complexity. We employed a large-scale comparative analysis that investigated the influence of brain size and life-history variables on longevity in parrots. Specifically, we addressed two hypotheses for evolutionary drivers of longevity: the cognitive buffer hypothesis, which proposes that increased cognitive abilities enable longer lifespans, and the expensive brain hypothesis, which holds that increases in lifespan are caused by prolonged developmental time of, and increased parental investment in, large-brained offspring. We estimated life expectancy from detailed zoo records for 133 818 individuals across 244 parrot species. Using a principled Bayesian approach that addresses data uncertainty and imputation of missing values, we found a consistent correlation between relative brain size and life expectancy in parrots. This correlation was best explained by a direct effect of relative brain size. Notably, we found no effects of developmental time, clutch size or age at first reproduction. Our results suggest that selection for enhanced cognitive abilities in parrots has in turn promoted longer lifespans
Solar-driven variation in the atmosphere of Uranus
Long-term measurements (1972-2015) of the reflectivity of Uranus at 472 and 551 nm display variability that is incompletely explained by seasonal effects. Spectral analysis shows this non-seasonal variability tracks the 11-year solar cycle. Two mechanisms could cause solar modulation, (a) nucleation onto ions or electrons created by galactic cosmic rays (GCR), or (b) UV-induced aerosol colour changes. Ion-aerosol theory is used to identify
expected relationships between reflectivity fluctuations and GCR flux, tested with multiple regression and compared to the linear response predicted between reflectivity and solar UV flux. The statistics show that 24% of the variance in reflectivity fluctuations at 472 nm is explained by GCR ion-induced nucleation, compared to 22% for a UV-only mechanism. Similar GCR-related variability exists in Neptune’s atmosphere, hence the effects found at Uranus provide the first example of common variability in two planetary atmospheres driven
through energetic particle modulation by their host star
- …