604 research outputs found
Decision trees to determine the possible drought periods in Ankara
Global climate change causes a decrease of precipitation in Turkey, as in many other parts of the world. As a result, droughts have now occurred over a larger area and in a more drastic way than in the past. Determining the factors in the formation and early prediction of drought will allow required measures of prevention to be taken in time. The present study evaluates drought conditions on monthly and yearly bases, with the measurements of precipitation, wind, humidity and temperature taken in the Ankara region between 1926 and 2006 using the techniques of decision trees. The obtained results demonstrated that the province of Ankara has a generally normal and near-normal arid climate and that the precipitation amounts in all months and precipitation and wind in January, should be taken into consideration to determine such aridity
Hard Tissue Healing Adjacent to Fresh or Set MTA as Root-End Filling Material
Mineral trioxide aggregate (MTA) has been shown to promote regeneration of periradicular tissues when used as a root-end filling material. The purpose of this study was to compare the effect of fresh MTA with set MTA on hard tissue healing following periradicular surgery.
Under general anesthesia, the root canals of twenty-four mandibular premolars in four 2-year-old beagle dogs were filled with MTA. Two weeks later the root-ends of half of the samples were surgically exposed and resected to the level of set MTA within the canals. After exposing and resecting the other 12 root-ends, class I cavities were prepared in these roots and filled with fresh MTA. Following closure of surgical flaps, the animals were allowed to heal and sacrificed four months later. Hard tissue healing was analyzed histomorphometrically. The frequency of cementum formation in the two groups was compared using a two-sample test for binomial proportions. Mean quantity of cementum formation and bone density were analyzed using the Mann-Whitney U-test at a significance level of alpha = 0.05.
The results indicated that although freshly-placed MTA resulted in a significantly higher incidence of cementum formation (12 out of 12 vs. 8 out of 12, p=0.028), there is no significant difference in the quantity of cementum or osseous healing associated with freshly-placed or set MTA when used as root-end filling material
The effect of anatomic differences on the relationship between renal artery and diaphragmatic crus
Background: The aim of this study is to investigate the effect of anatomic differences on the relationship between renal artery and diaphragmatic crus via the touch of two structures. Materials and methods: The study included dynamic computed tomography (CT) scans of 308 patients performed mainly for characterisation of liver and renal masses. Anatomic differences including the thickness of the diaphragmatic crus, the localisation of renal artery ostium at the wall of aorta, the level of renal artery origin with respect to superior mesenteric artery were evaluated. Statistical relationships between renal artery-diaphragmatic crus contact and the anatomic differences were assessed.
Results: Thickness of the diaphragmatic crus at the level of renal artery origin exhibited a statistically significant relationship to renal artery-diaphragmatic crus contact at the left (p < 0.001) and right side (p < 0.001). There was a statistically significant relationship between high renal artery origin and renal artery- -diaphragmatic crus contact at the left (p < 0.001) and right side (p = 0.01). The localisation of renal artery ostium at the wall of aorta (right side, p = 0.436, left side, p = 0.681) did not demonstrate a relationship to renal artery-diaphragmatic crus contact.
Conclusions: Thickness of the diaphragmatic crus and high renal artery origin with respect to superior mesenteric artery are crucial anatomic differences determining the relationship of renal artery and diaphragmatic crus. (Folia Morphol 2018; 77, 1: 22–28)
Denim sandblasters’ pneumoconiosis
A 28-year-old man with long standing dyspnea for 4 years and a history of dry cough, sweating and loss of weight was admitted to the hospital. Physical examination showed fine crackles at the end of inspiration. The laboratory tests revealed increased low density lipoprotein level with slight increase in erytrocyte sedimentation rate. Sputum smears for blood culture and tuberculosis were negative. He was referred to the radiology department for imaging studies. Chest radiography revealed bilateral reticulonodular infiltrates in upper and middle zones. High resolution computed tomography showed bilateral diffuse intralobular micronodules in upper and mid lung zones with interlobular septal lines also bilateral pleural thickening was seen (A). Right middle lung zone showed hyperaeration (B). Also he had bilateral hilar, right paratracheal, prevascular and subcarinal lymphadenopathies (C). He had been working in producing sandblasted denims for 10 years. The diagnosis was based on clinical history, occupational exposure to silica dust, and chest x-ray findings after other possible diagnoses were ruled out
Hypericum sp.: essential oil composition and biological activities
Phytochemical composition of Hypericum
genus has been investigated for many years. In the recent past, studies on the essential oils (EO) of this genus have been progressing and many of them have reported interesting biological activities. Variations in the EO composition of Hypericum species influenced
by seasonal variation, geographic distribution, phenological cycle and type of the organ in which EO are produced and/or accumulated have also been reported. Although many reviews attributed to the characterization
as well as biological activities of H. perforatum
crude extracts have been published, no review has been published on the EO composition and biological activities of Hypericum species until recently (Crockett
in Nat Prod Commun 5(9):1493–1506, 2010;
Bertoli et al. in Global Sci Books 5:29–47, 2011). In this article, we summarize and update information regarding the composition and biological activities of Hypericum species EO. Based on experimental work carried out in our laboratory we also mention possible biotechnology approaches envisaging EO improvement of some species of the genus.Fundação para a Ciência e a Tecnologia (FCT) - project PTDC/AGR AAM/70418/2006, SFRH/BD/
13283/2003
Synthesis and Structure–Property Relationship of meso-Substituted Porphyrin- and Benzoporphyrin–Thiophene Conjugates toward Electrochemical Reduction of Carbon Dioxide
A novel series of ZnII-trans-A2B2 porphyrins and benzoporphyrins bearing phenyl and thiophene-based meso-substituents was successfully synthesized and characterized by spectroscopic and electrochemical techniques. Systematic comparison among the compounds in this series, together with the corresponding A4 analogs previously studied by our group, led to the understanding of the effects of π-conjugated system extension of a porphyrin core through β-fused rings, replacement of the phenyl with the thiophene-based meso-groups, and introduction of additional thiophene rings on thienyl substituents on photophysical and electrochemical properties. Oxidative electropolymerization through bithiophenyl units of both A4 and trans-A2B2 analogs was achieved, resulting in porphyrin– and benzoporphyrin–oligothiophene conjugated polymers, which were characterized by cyclic voltammetry and absorption spectrophotometry. Preliminary studies on catalytic performance toward electrochemical reduction of carbon dioxide (CO2) was described herein to demonstrate the potential of the selected compounds for serving as homogeneous and heterogeneous electrocatalysts for the conversion of CO2 to carbon monoxide (CO)
SIMS: A Hybrid Method for Rapid Conformational Analysis
Proteins are at the root of many biological functions, often performing complex tasks as the result of large changes in their
structure. Describing the exact details of these conformational changes, however, remains a central challenge for
computational biology due the enormous computational requirements of the problem. This has engendered the
development of a rich variety of useful methods designed to answer specific questions at different levels of spatial,
temporal, and energetic resolution. These methods fall largely into two classes: physically accurate, but computationally
demanding methods and fast, approximate methods. We introduce here a new hybrid modeling tool, the Structured
Intuitive Move Selector (SIMS), designed to bridge the divide between these two classes, while allowing the benefits of both
to be seamlessly integrated into a single framework. This is achieved by applying a modern motion planning algorithm,
borrowed from the field of robotics, in tandem with a well-established protein modeling library. SIMS can combine precise
energy calculations with approximate or specialized conformational sampling routines to produce rapid, yet accurate,
analysis of the large-scale conformational variability of protein systems. Several key advancements are shown, including the
abstract use of generically defined moves (conformational sampling methods) and an expansive probabilistic
conformational exploration. We present three example problems that SIMS is applied to and demonstrate a rapid solution
for each. These include the automatic determination of ムムactiveメメ residues for the hinge-based system Cyanovirin-N,
exploring conformational changes involving long-range coordinated motion between non-sequential residues in Ribose-
Binding Protein, and the rapid discovery of a transient conformational state of Maltose-Binding Protein, previously only
determined by Molecular Dynamics. For all cases we provide energetic validations using well-established energy fields,
demonstrating this framework as a fast and accurate tool for the analysis of a wide range of protein flexibility problems
Current trends in cannulation and neuroprotection during surgery of the aortic arch in Europe†‡
OBJECTIVES To conduct a survey across European cardiac centres to evaluate the methods used for cerebral protection during aortic surgery involving the aortic arch. METHODS All European centres were contacted and surgeons were requested to fill out a short, comprehensive questionnaire on an internet-based platform. One-third of more than 400 contacted centres completed the survey correctly. RESULTS The most preferred site for arterial cannulation is the subclavian-axillary, both in acute and chronic presentation. The femoral artery is still frequently used in the acute condition, while the ascending aorta is a frequent second choice in the case of chronic presentation. Bilateral antegrade brain perfusion is chosen by the majority of centres (2/3 of cases), while retrograde perfusion or circulatory arrest is very seldom used and almost exclusively in acute clinical presentation. The same pumping system of the cardio pulmonary bypass is most of the time used for selective cerebral perfusion, and the perfusate temperature is usually maintained between 22 and 26°C. One-third of the centres use lower temperatures. Perfusate flow and pressure are fairly consistent among centres in the range of 10-15 ml/kg and 60 mmHg, respectively. In 60% of cases, barbiturates are added for cerebral protection, while visceral perfusion still receives little attention. Regarding cerebral monitoring, there is a general tendency to use near-infrared spectroscopy associated with bilateral radial pressure measurement. CONCLUSIONS These data represent a snapshot of the strategies used for cerebral protection during major aortic surgery in current practice, and may serve as a reference for standardization and refinement of different approache
JNK modifies neuronal metabolism to promote proteostasis and longevity.
Aging is associated with a progressive loss of tissue and metabolic homeostasis. This loss can be delayed by single-gene perturbations, increasing lifespan. How such perturbations affect metabolic and proteostatic networks to extend lifespan remains unclear. Here, we address this question by comprehensively characterizing age-related changes in protein turnover rates in the Drosophila brain, as well as changes in the neuronal metabolome, transcriptome, and carbon flux in long-lived animals with elevated Jun-N-terminal Kinase signaling. We find that these animals exhibit a delayed age-related decline in protein turnover rates, as well as decreased steady-state neuronal glucose-6-phosphate levels and elevated carbon flux into the pentose phosphate pathway due to the induction of glucose-6-phosphate dehydrogenase (G6PD). Over-expressing G6PD in neurons is sufficient to phenocopy these metabolic and proteostatic changes, as well as extend lifespan. Our study identifies a link between metabolic changes and improved proteostasis in neurons that contributes to the lifespan extension in long-lived mutants
- …
