56 research outputs found

    Melting line of calcium characterized by in situ LH-DAC XRD and first-principles calculations

    Get PDF
    In this work, the melting line of calcium has been characterized both experimentally, using synchrotron X-ray diffraction in laser-heated diamond-anvil cells, and theoretically, using first-principles calculations. In the investigated pressure and temperature range (pressure between 10 and 40 GPa and temperature between 300 and 3000 K) it was possible to observe the face-centred phase of calcium and to confirm (and characterize for the first time at these conditions) the presence of the body-centred cubic and the simple cubic phase of calcium. The melting points obtained with the two techniques are in excellent agreement. Furthermore, the present results agree with the only existing melting line of calcium obtained in laser-heated diamond anvil cells, using the speckle method as melting detection technique. They also confirm a flat slope of the melting line in the pressure range between 10 and 30 GPa. The flat melting curve is associated with the presence of the solid high-temperature body-centered cubic phase of calcium and to a small volume change between this phase and the liquid at melting. Reasons for the stabilization of the body-centered face at high-temperature conditions will be discussed

    A comparison of different Fourier transform procedures for analysis of diffraction data from noble gas fluids

    Get PDF
    A comparison is made between the three principal methods for the analysis of neutron and x-ray diffraction data from noble gas fluids by direct Fourier transform. All three methods (standard Fourier transform, Lorch modification, and Soper–Barney modification) are used to analyze four different sets of diffraction data from noble gas fluids. The results are compared to the findings of a full-scale real-space structure determination, namely, Empirical Potential Structure Refinement. Conclusions are drawn on the relative merits of the three Fourier transform methods, what information can be reliably obtained using each method, and which method is most suitable for the analysis of different kinds of diffraction data. The mathematical validity of the Lorch method is critically analyzed

    Experimental and theoretical confirmation of an orthorhombic phase transition in niobium at high pressure and temperature

    Get PDF
    Compared to other body-centered cubic (bcc) transition metals, Nb has been the subject of fewer compression studies and there are still aspects of its phase diagram which are unclear. Here, we report a combined theoretical and experimental study of Nb under high pressure and temperature. We present the results of static laser-heated diamond anvil cell experiments up to 120 GPa using synchrotron-based fast x-ray diffraction combined with ab initio quantum molecular dynamics simulations. The melting curve of Nb is determined and evidence for a solid-solid phase transformation in Nb with increasing temperature is found. The high-temperature phase of Nb is orthorhombic Pnma. The bcc-Pnma transition is clearly seen in the experimental data on the Nb principal Hugoniot. The bcc-Pnma coexistence observed in our experiments is explained. Agreement between the measured and calculated melting curves is very good except at 40–60 GPa where three experimental points lie below the theoretical melting curve by 250 K (or 7%); a possible explanation is given

    Phase diagram of calcium at high pressure and high temperature

    Get PDF
    Resistively heated diamond-anvil cells have been used together with synchrotron x-ray diffraction to investigate the phase diagram of calcium up to 50 GPa and 800 K. The phase boundaries between the Ca-I (fcc), Ca-II (bcc), and Ca-III (simple cubic, sc) phases have been determined at these pressure-temperature conditions, and the ambient temperature equation of state has been generated. The equation of state parameters at ambient temperature have been determined from the experimental compression curve of the observed phases by using third-order Birch-Murnaghan and Vinet equations. A thermal equation of state was also determined for Ca-I and Ca-II by combining the room-temperature Birch-Murnaghan equation of state with a Berman-type thermal expansion model.Part of the research was supported by the Spanish Government MINECO under Grants No. MAT2016-75586-C4-1/4P and No. MAT2015-71070-REDC.Peer reviewe

    Direct measurement of thermal conductivity in solid iron at planetary core conditions

    Get PDF
    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth’s core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth’s magnetic field via dynamo action1, 2, 3. Attempts to describe thermal transport in Earth’s core have been problematic, with predictions of high thermal conductivity4, 5, 6, 7 at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record8, 9, 10. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell11, 12. Our measurements place the thermal conductivity of Earth’s core near the low end of previous estimates, at 18–44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements10 indicating that Earth’s geodynamo has persisted since the beginning of Earth’s history, and allows for a solid inner core as old as the dynamo

    Carbon-depleted outer core revealed by sound velocity measurements of liquid iron-carbon alloy

    Get PDF
    The relative abundance of light elements in the Earth's core has long been controversial. Recently, the presence of carbon in the core has been emphasized, because the density and sound velocities of the inner core may be consistent with solid Fe(7)C(3). Here we report the longitudinal wave velocity of liquid Fe(84)C(16) up to 70 GPa based on inelastic X-ray scattering measurements. We find the velocity to be substantially slower than that of solid iron and Fe(3)C and to be faster than that of liquid iron. The thermodynamic equation of state for liquid Fe(84)C(16) is also obtained from the velocity data combined with previous density measurements at 1 bar. The longitudinal velocity of the outer core, about 4% faster than that of liquid iron, is consistent with the presence of 4–5 at.% carbon. However, that amount of carbon is too small to account for the outer core density deficit, suggesting that carbon cannot be a predominant light element in the core
    • 

    corecore