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Carbon-depleted outer core revealed by sound
velocity measurements of liquid iron–carbon alloy
Yoichi Nakajima1, Saori Imada2,3, Kei Hirose3,4, Tetsuya Komabayashi2,5, Haruka Ozawa4,6,

Shigehiko Tateno3,6, Satoshi Tsutsui7, Yasuhiro Kuwayama8 & Alfred Q.R. Baron1,7

The relative abundance of light elements in the Earth’s core has long been controversial.

Recently, the presence of carbon in the core has been emphasized, because the density and

sound velocities of the inner core may be consistent with solid Fe7C3. Here we report the

longitudinal wave velocity of liquid Fe84C16 up to 70 GPa based on inelastic X-ray scattering

measurements. We find the velocity to be substantially slower than that of solid iron and Fe3C

and to be faster than that of liquid iron. The thermodynamic equation of state for liquid

Fe84C16 is also obtained from the velocity data combined with previous density measure-

ments at 1 bar. The longitudinal velocity of the outer core, about 4% faster than that of liquid

iron, is consistent with the presence of 4–5 at.% carbon. However, that amount of carbon is

too small to account for the outer core density deficit, suggesting that carbon cannot be a

predominant light element in the core.
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S
ound velocity and density are important observational
constraints on the chemical composition of the Earth’s core.
While properties of solid iron alloys have been extensively

examined by laboratory studies to core pressures (4136 GPa)1–3,
little is known for liquid alloys because of experimental
difficulties. The core is predominantly molten, and the
longitudinal wave (P-wave) velocity of liquid iron alloy is the
key to constraining its composition. However, previous static
high-pressure and -temperature (P–T) measurements of liquid
iron alloys were performed only below 10 GPa using large-volume
presses4–6. Shock wave experiments have been carried out at
much higher pressures but only along a specific Hugoniot P–T
path7,8.

Carbon is one of the possible light alloying components in the
core because of its high cosmic abundance and strong chemical
affinity with liquid iron9. Its high metal/silicate partition
coefficients indicate that thousands of parts per million to
several weight percent of carbon could have been incorporated
into the core during its formation9–11. In addition, recent
experimental and theoretical studies12,13 have suggested that
solid Fe7C3 may explain the properties of the inner core, in
particular its high Poisson’s ratio14,15, supporting the presence of
carbon in the core.

In this study, we determine the P-wave velocity (VP)
(equivalent to bulk sound velocity, VF, in a liquid) of liquid
Fe84C16 at high P–T based on inelastic X-ray scattering (IXS)
measurements. Combined with its density data at 1 bar (ref. 16)
both velocity and density (r) profiles of liquid Fe84C16 along
adiabatic compression are obtained. They are compared
with seismological observations, indicating that both VP and
r in the Earth’s outer core are not explained simultaneously
by liquid Fe–C.

Results
Longitudinal wave velocity measurements. We collected the
high-resolution IXS spectra from liquid Fe84C16 (4.0±0.3 wt.%
carbon) at static high P–T using both resistance- and laser-heated
diamond-anvil cells (Methods; Fig. 1). The starting material was
synthesized beforehand as a mixture of fine-grained Fe and Fe3C
at 5 GPa and 1,623 K in a multi-anvil apparatus. Experimental
P–T conditions were well above the eutectic temperature in the
Fe–Fe3C binary system (Supplementary Fig. 1). The carbon
concentration in the eutectic liquid is known to be 3.8–4.3 wt.% at
1 bar to 20 GPa (ref. 17), almost identical to the composition of
our sample. Above 20 GPa, we heated the sample to temperatures
comparable or higher than the melting temperature of Fe3C, a
liquidus phase in the pressure range explored, assuring a fully
molten sample. The molten state of the specimen was carefully
confirmed, before and after the IXS measurements, by the absence
of diffraction peaks from the sample (Fig. 2). We sometimes,
depending on a sample volume, were also able to observe the
diffuse diffraction signal typical of a liquid.

The VP of liquid Fe84C16 was determined between 7.6 and
70 GPa (Fig. 3 and Supplementary Table 1) from dispersion
curves for a range of momentum transfer (Fig. 4). It was found to
be 15–30% smaller than that of solid Fe (refs 3,18–20) and Fe3C
(refs 21–23; note that a starting material in the present
experiments was a mixture of these solid phases) (Fig. 5),
confirming that we measured a liquid sample. The velocities of a
fictive solid Fe84C16 alloy are also estimated assuming a linear
velocity change between Fe (ref. 24) and Fe3C (ref. 23) indicating
that VP drops by 13% upon melting at 2,300 K, a eutectic
temperature at 45 GPa (ref. 17). Such a velocity change is
comparable to that expected for pure Fe. The difference in VF
between solid and liquid Fe84C16 is very small (1.8%). On the

other hand, the VP of our liquid Fe84C16 sample is 3–14% faster at
8–70 GPa than that of liquid Fe determined by shock-wave study8

(Fig. 3).
Earlier ultrasonic measurements performed below 10 GPa

reported a change in VP by o2–3% per 1,000 K for liquid Fe–S
alloys4,5. Theoretical calculations25–27 and shock compression
data8 on liquid Fe and Fe–S alloy demonstrated even smaller
effects above 100 GPa (o0.5% by 1,000 K). It is therefore very
likely that the VP of liquid Fe84C16 is also not sensitive to
temperature with the temperature effect much smaller than the
uncertainty in the present velocity determinations (±3%).

Thermodynamical equation of state. VP of a liquid can be
described using the Murnaghan equation of state4 (Methods) as;

VP ¼
ffiffiffiffiffiffiffi
KS0

r0

s
1þ K

0
S

KS0
P

� �1
2� 1

2K
0
S
; ð1Þ

where KS and K0S are adiabatic bulk modulus and its pressure
derivative, respectively (zero subscripts denote values at 1 bar and
T¼T0). Here, consistent with the discussion above, we neglect
the temperature dependence of our VP data, while r0 is taken to
be temperature dependent16 (Methods). We fit equation (1) to
our P–VP data for liquid Fe84C16 and find KS0¼ 110±9 GPa
and K0S¼ 5.14±0.30 when T0¼ 2,500 K (Supplementary
Table 2 and Supplementary Fig. 2). The choice of T0 and,
accordingly, the variation in r0 practically changed KS0

and K0S0 as (qKS0/qT)¼ � 9.4� 10� 3 GPa K� 1 and (qK0S0/qT)
¼ � 2.7� 10� 4 K� 1. Our value for KS0 is similar to that for
liquid iron8 but for K0S is higher than that for pure iron, K0S¼ 4.7.
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Figure 1 | Typical inelastic X-ray scattering spectra. These data were

collected at 26 GPa and 2,530 K at momentum transfers Q, as indicated.

The spectra include three components: a quasi-elastic peak near zero

energy transfer (blue), longitudinal acoustic (LA) phonon mode of liquid

Fe84C16 (red), and transverse acoustic (TA) phonon mode of diamond

(turquoise).
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This suggests that liquid Fe84C16 becomes progressively stiffer
than liquid Fe with increasing pressure. We also found
VP0¼ 4,121±177 m s� 1 for liquid Fe84C16 from KS0 and r0, in
good agreement with a previous study28 of liquid Fe86C14 at
1 bar (4,050 m s� 1) and faster than VP0¼ 3,860 m s� 1 for
liquid Fe (ref. 8).

To compare the present results with earlier density measure-
ments of liquid Fe–C alloys at high pressure29,30 the isothermal

bulk modulus for liquid Fe84C16 is estimated to be KT0¼ 100
(82) GPa at 1,500 K (2,500 K) from our determination of KS

combined with Grüneisen parameter g0¼ 1.74 (ref. 8) and
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Figure 2 | X-ray diffraction spectra before and after melting. They were

collected at 2,160 K (a), 1,810 K (b) and 1,690 K (c) during heating at 31 GPa.

The starting material was composed of Fe (e or g) and Fe3C (c), and the

peaks of Al2O3 (a) were from a thermal insulator. The coexistence of e- and

g-Fe phases at 1,610 K was due to a sluggish solid–solid phase transition49

and the peaks from the e-phase were lost at 1,810 K. All sample peaks

disappeared between 1,810 and 2,160 K. In addition, the background was

enhanced slightly, indicating a diffuse scattering signal from a liquid sample.
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thermal expansion coefficient16 (Methods). When applying
CP/CV¼ 1.125 at 1,820 K for liquid Fe86C14 derived from
theoretical calculations31, KT0¼ 106–98 GPa is obtained at the
same temperature range. These KT0 values for liquid Fe84C16 are
similar to KT0¼ 95–63 GPa for liquid Fe at 1,500–2,500 K (ref. 8)
On the other hand, they are significantly larger than
KT0¼ 55.4 GPa for liquid Fe86C14 at 1,500 K and KT0¼ 50 GPa
for liquid Fe75C25 at 1,973 K from previous density
measurements29,30. However, the calculated density for Fe84C16

using the present EoS are in reasonable agreement with the
previous density measurements of Fe75C25 (ref. 29) (Fig. 6). The
disagreement of elastic parameters with such earlier experiments
may be attributed either to the limited pressure range of the
previous density determinations, or to a different structure or
magnetic (or electronic) change in the state of the liquid Fe–C at
low pressure, as has been suggested from the change in
compressional behaviour of liquid Fe78C22 around 5 GPa
(ref. 6). Our data were collected above 7.6 GPa, so that the
physical properties of liquid Fe–C obtained here should be more
applicable to the Earth’s core.

r of liquid Fe84C16 is then given, using the elastic parameters
determined above, by;

r ¼ r0 1þ K 0S
KS0

P

� � 1
K0

S
: ð2Þ

Equations (1) and (2) give the VP and r profiles for adiabatic
compression (Methods), assuming g0¼ 1.74, the same as that of
liquid Fe (ref. 8) (Fig. 7). We find VP¼ 9,200 m s� 1 and
r¼ 9.82–9.61 g cm� 3 at the core-mantle boundary (CMB) for
TCMB¼ 3,600–4,300 K (refs 32,33) This indicates that VP of liquid
Fe84C16 is 19.6% faster than that of liquid Fe at the CMB8,
implying that the addition of 1 at.% carbon increases the VP of
liquid Fe by 1.2%. The extrapolation of the present experimental
data using the Murnaghan equation of state may overestimate the
VP by 2� 4% at the CMB (Supplementary Note 1 and
Supplementary Fig. 3), but, even if this is the case, 1 at.%
carbon enhances the VP of liquid Fe by as large as 0.8%. Indeed,
the effect of carbon is much larger than a recent theoretical
prediction of only 0.2% increase in velocity per 1 at.% carbon at
136 GPa (ref. 34). On the other hand, our data show that the
incorporation of 1 at.% carbon reduces the density of liquid Fe by
0.6–0.7%, while theory suggested only 0.3% density reduction by
1 at.% carbon34.

Discussion
We now compare the sound velocity and density of liquid Fe84C16

and liquid Fe with the seismologically based PREM model35

for the outer core (Fig. 8). The VP and r of liquid Fe are 4.6%
slower and 10.1–8.6% denser, respectively, than the PREM at the
CMB (3,600–4,300 K). To match the PREM values, considering
the uncertainty of data extrapolation to higher pressures
(Supplementary Note 1), only 5.2–4.0 at.% (1.2–0.9 wt.%)
carbon is required to match the velocity, whereas 15.4–12.0
at.% (3.8–2.9 wt.%) carbon is necessary to account for the density.
Therefore, carbon cannot be a predominant light element in the
outer core.

These results suggest there is o5.2 at.% (1.2 wt.%) carbon in
the outer core, consistent with the previous cosmochemical and
geochemical arguments. In particular, the silicate portion of the
Earth exhibits much higher 13C/12C isotopic ratio than that of
Mars, Vesta and chondrite meteorites, as may be attributed
to a strong enrichment of 12C in core-forming metals9. The
carbon isotopic fractionation that occurred during continuous
core-formation process proposed previously36,37 will give a
reasonable 13C/12C ratio in the silicate Earth, and yields 1 wt.%
carbon in the core9. In addition, Wood et al.9 demonstrated that
carbon strongly affects the chemical activity of Mo and W in
liquid metal, so that their abundance in the mantle can be
explained by partitioning between silicate melt and core-forming
metal with B0.6 wt.% carbon. It has been repeatedly suggested
that the inner core may be composed of Fe7C3, which accounts
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for high Poisson’s ratio observed14,15. The crystallization of solid
Fe7C3 from a liquid outer core with o1.2 wt.% carbon may still
be possible if sulfur is also included in the core38.

Methods
High P–T generation. Molten Fe–C alloy was obtained at high P–T in an external-
resistance-heated (EH) or laser-heated (LH) diamond-anvil cell (DAC;
Supplementary Table 1) using facilities installed at SPring-8. A disc of pre-syn-
thesized Fe84C16 sample, 20–25 mm thick and 100–120 mm in diameter, was loaded
into a hole of a rhenium gasket, together with two 12–17 mm thick single-crystal
Al2O3 sapphire discs that served as both thermal and chemical insulators. The
sample was compressed with 300 mm culet diamond anvils to a pressure of interest
before heating.

In LH-DAC experiments, the sample was heated at high pressure from both
sides by using two 100 W single-mode Yb fibre lasers (YLR-100-AC, IPG Photonics
Corp.). The Gaussian-type energy distribution of the laser beam was converted into
flat-top one with a refractive beam shaper (GBS-NIR-H3, Newport Corp.). A
typical laser spot was 50–70 mm in diameter on the sample, much larger than X-ray
beam size (B17 mm). We determined temperature by a spetroradiometric method,
and its variations within the area irradiated by X-rays and fluctuations during IXS
measurements were o±10%. The pressure was obtained from the equation of
state for Fe3C (ref. 39) from the lattice constant observed before melting at
1,800–2,500 K. Its error was derived from uncertainties in both temperature and
the volume of Fe3C. A typical image of a sample recovered after the laser heating
experiment at 70 GPa and 2,700 K is given in Supplementary Fig. 4.

Only run #FeC08 was conducted in an EH-DAC. The whole sample was
homogeneously heated by a platinum-resistance heater placed around the
diamonds. The temperature was obtained with a Pt-Rh (type-R) thermocouple
whose junction was in contact with the diamond near a sample chamber. The
temperature uncertainty was o20 K. We determined the pressure based on the
Raman shift of a diamond anvil40 before heating at 300 K, whose uncertainty may
be as much as ±20%.

IXS measurements. The sound velocity of liquid Fe–C alloy was determined in
the DAC by high-resolution IXS spectroscopy at the beamline BL35XU, SPring-8
(ref. 41). Both LH- and EH-DACs were placed into vacuum chambers to minimize
background scattering by air. The measurements were carried out with B2.8 meV
energy resolution using Si (999) backscattering geometry at 17.79 keV. The

experimental energy resolutions were determined using scattering from
Polymethyl–methacrylate. The incident X-ray beam was focused to about 17 mm
size (full width at half maximum) in both horizontal and vertical directions by
using Kirkpatrick–Baez mirrors42. The X-ray beam size was much smaller than
heated area (50–70 mm for LH-DAC). Scattered photons were collected by an array
of 12 spherical Si analyzers leading to 12 independent spectra at momentum
transfers (Q) between 3.2 and 6.6 nm� 1 with a resolution DQ B0.45 nm� 1 (full
width) that was set by slits in front of the analyzer array. The energy transfer range
of ±30 (or � 10 to ±30) meV was scanned for 1–3 h. Before and after IXS data
collections, sample melting was confirmed by X-ray diffraction data (Fig. 2) that
was collected, in situ, by switching a detector to a flat panel area detector
(C9732DK, Hamamatsu Photonics K.K.)43.

The IXS spectra included three (sometimes five) peaks (Fig. 1) of Stokes and
anti-Stokes components of the longitudinal acoustic (LA) phonon mode from the
sample (sometimes also from a diamond), and a quasi-elastic contribution near
zero energy transfer. These spectra were fitted with the damped harmonic oscillator
(DHO) mode44 for acoustic phonon modes and with Lorenzian function for quasi-
elastic peaks convolved by experimental resolution function. The DHO model
function can be described as;

SDHO Q;oð Þ ¼ 1
1� e�‘o=kB T

� �
AQ

p
4ooQgQ

ðo2 �O2
QÞ

2 þ 4g2
Qo2

; ð3Þ

where AQ, GQ, OQ, kB and : are the amplitude, width, and energy of inelastic
modes, Boltzmann constant and Planck constant, respectively. In the fitting,
temperature T was fixed at a sample temperature obtained by a spetroradiometric
method or a thermocouple. The excitation energy modes appearing at both Stokes
and anti-Stokes sides correspond to the phonon creation and annihilation,
respectively. With increasing temperature, as given by the Bose function in
equation (3), the intensities of such Stokes and anti-Stokes peaks become similar to
each other. A symmetric shape of the present IXS spectra therefore assures that the
IXS signals originated from a high-temperature area.

The peak at a finite energy transfer gives the frequency of each mode (Fig. 1).
The excitation energies for the LA phonon mode of liquid Fe84C16 obtained in a
pressure range of 7.6–70 GPa are plotted as a function of momentum transfer (Q)
in Fig. 4. The compressional sound wave or P-wave velocity (VP) corresponds to
the long-wavelength LA velocity at Q-0 limits;

VP ¼
dE
dQ

� �
Q!0

: ð4Þ

We made a linear fit to the data obtained at low Q below 3.5 nm� 1 to determine
the P-wave velocity (Supplementary Table 1), because positive dispersion can
appear at higher Q443 nm� 1 (ref. 45). For comparison, the results based on a
sine-curve fit to all Q-range data, as is usually applied for polycrystalline samples in
similar high-pressure IXS measurements46, are also given in Supplementary
Table 1. In general, the error bars of the two determinations of VP overlap, though
the sine fit to large Q does give slightly larger VP, as would qualitatively be expected
from previous measurements on liquid iron47.

Equation of state for liquid Fe84C16. We constructed an equation of state (EoS)
for liquid Fe84C16 to extrapolate the present VP data and to estimate its density at
the core pressure range. VP of liquid can be written as;

VP ¼
ffiffiffiffiffi
KS

r

s
: ð5Þ

The pressure dependence of KS is assumed to be

KS ¼ KS0 þK 0SP; ð6Þ
where K0S is the pressure derivative of KS and pressure and subscript zero indicates
a value at 1 bar. The adiabatic Murnaghan EoS can be described as (for example,
ref. 4);

r ¼ r0 1þ K 0S
KS0

P

� � 1
K0

S
: ð7Þ

Equation (5) is thus rewritten as;

VP ¼
ffiffiffiffiffiffiffi
KS0

r0

s
1þ K 0S

KS0
P

� �1
2� 1

2K0
S
: ð8Þ

The temperature effect on r0 can be expressed by;

r0ðTÞ ¼ r0ðT0Þ=expð
ZT
T0

adTÞ: ð9Þ

The thermal expansion coefficient a is also dependent on temperature as;

a Tð Þ ¼ aþ bT; ð10Þ
where a and b are constants. Previous density measurements16 of liquid Fe–C
alloys at 1 bar give a¼ 6.424� 10� 5 K� 1 and b¼ 0.606� 10� 8 K� 2 for liquid
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Figure 8 | Effect of carbon on the velocity and density of liquid Fe at

136 GPa. (a) Velocity and (b) density for liquid Fe84C16 at TCMB¼4,300 K

(red) and 3,600 K (blue). Present results (closed diamonds, solid curves)

are compared with theoretical calculations34 (triangles, broken curve). The

data for pure Fe are from shock compression study8 (open diamonds) and

theoretical calculations26 (closed circles). PREM denotes seismological

observations35 at the CMB.
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Fe84C16 using r0¼ 6.505 g cm� 3 at T0¼ 2,500 K as a reference. The result of fitting
equation (8) to the present P�VP data is given in Fig. 3.

Isothermal bulk modulus. We estimate isothermal bulk modulus KT from isen-
tropic bulk modulus KS in two ways. The relationship between these two is
described as follows;

KS

KT
¼ CP

CV
¼ 1þ ag; ð11Þ

where CP and CV are heat capacities at constant pressure and volume, respectively.
Although g for liquid Fe–C alloys is not known, g0¼ 1.74 has been reported for
liquid Fe at 1 bar and 1,811 K (ref. 8) It is close to 1.58 for liquid Fe90O8S2

estimated from the shock compression data set48.

Extrapolation of present data to core pressures. With the EoSs determined
above (equations (7) and (8)), we extrapolate the P-wave velocity and density of
liquid Fe84C16 to the core pressure range along adiabatic compression, in which
temperature is given by;

T¼T0 exp
Zr
r0

ðg=rÞdr

2
64

3
75: ð12Þ

Assuming g¼ g0� (r0/r), temperature is simply represented as;

T¼T0 exp g0ð1�
r0

r
Þ

� �
: ð13Þ

g0 is fixed at 1.74 previously obtained for liquid Fe (ref. 8). Using the temperature
dependence of KS0 and r0 shown above, we calculate density, velocity and
temperature profiles along adiabatic compression with various reference
temperatures at the CMB. The adiabatic compression profiles of liquid Fe84C16 for
the low (T0¼ 2,045 K and TCMB¼ 3,600 K)32 and high (T0¼ 2,457 K and
TCMB¼ 4,300 K)33 temperature cases are calculated in Fig. 7.
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