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Abstract
The thermodynamics of the system Fe–Si–O under high pressure (P) and temperature (T) was examined, starting with 
modelling the phase transition between a face-centred cubic (fcc) and hexagonal close-packed (hcp) structure in Fe–Si alloy 
which was previously examined by experiment under high P–T conditions. The mixing properties of Fe and Si for the iron 
phases were found to be approximated by ideal mixing under high P and T conditions. The entropy changes upon melting 
of the end-members of the system are fairly large, and therefore the melting temperature of the Si-bearing fcc or hcp phases 
needs to be insensitive to the Si content, to account for the reported close compositions of coexisting liquid and solid (< 1 
wt%Si at P > 50 GPa). The solidus and liquidus temperatures of Fe–Si iron alloy would therefore, not significantly be changed 
by the presence of Si at the inner core-outer core boundary, which enables us to evaluate the melting curve of Fe–Si fcc and 
hcp phases. From thus-constrained melting curve, I assessed a thermal equation of state of Si-bearing iron liquid. I then 
estimated a seismologically consistent outer core composition as a function of Si and O contents using the EoS for liquids 
constructed in this study and the literature. The best-fit composition is Fe-5.8(0.6) wt%Si–0.8(0.6) wt%O, which however 
does not precipitate a solid iron phase that is consistent with the inner core density. Therefore, Earth’s core cannot be fully 
represented by the system Fe–Si–O and it should include another light element.

Keywords Earth’s core · High-pressure · Thermodynamics · Fe–Si alloy · Fe–Si–O alloy · Equation of state

Introduction

Silicon and oxygen are considered major impurities present 
in Earth’s iron-nickel core as a consequence of metal-silicate 
partitioning during core formation (Wade and Wood 2005; 
Rubie et al. 2011; Siebert et al. 2013). However, suggested 
concentrations of Si and O from element partitioning in the 
magma ocean vary among studies: 5-7 wt% Si + 0 wt% O 
(Wade and Wood 2005), 8 wt% Si + 0.5 wt% O (Rubie et al. 
2011), and 1.5–2.2 wt% Si + 4.5–5.5 wt% O (Siebert et al. 
2013). The validity of a hypothetical Si- and O-bearing 
iron core can be tested by comparing its predicted physical 

properties with seismologically constrained parameters 
which include the seismic P-wave velocity (Vp) and density. 
For a liquid core, the Vp and density can be calculated from 
a thermodynamic potential such as the Gibbs free energy as 
a function of pressure (P), temperature (T), and composition 
(e.g., Komabayashi 2014).

While thermodynamic models including mixing prop-
erty of liquids were established for the system Fe–FeO 
under core P–T conditions (Frost et al. 2010; Komabayashi 
2014), a self-consistent thermodynamic model for the sys-
tem Fe–(Fe)Si which can be applicable to Earth’s core has 
yet to be constructed although the system has extensively 
been studied by both experiment and first-principles calcu-
lation (Alfe et al. 2002; Dobson et al. 2002; Lin et al. 2002; 
Kuwayama and Hirose 2004; Tateno et al. 2015; Ozawa et al. 
2016; Komabayashi et al. 2019). A thermodynamic model 
for the system Fe–Si needs to address mixing property of 
Fe and Si in iron phases, since these phases form solutions 
and their nonideality affects the P–T locations of chemical 
reactions involving them. The thermodynamic model estab-
lished at 1 bar in metallurgy indicates that the body-centred 
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cubic (bcc), face-centred cubic (fcc), and liquid phases show 
strong negative nonideality which stabilizes them more than 
what expected from ideal mixing (e.g., Kanibolotsky et al. 
2003; Ohnuma et al. 2012). Although Huang et al. (2019) 
reported that the mixing of Fe, Si, and O in liquids under 
core pressures would be ideal from the first-principles calcu-
lations, the evolution of the mixing properties with increas-
ing pressure and temperature needs to be evaluated from 
experimental data.

Another important part of thermodynamic modelling of 
the system Fe–Si is inclusion of melting relations. The width 
of the melting loops of iron phases was studied by both 
experiment and theory because it is the key to understanding 
the Si partitioning between the solid inner core and liquid 
outer core when the inner core crystallises (Kuwayama 
and Hirose 2004; Ozawa et al. 2016; Alfe et al. 2002). At 
1 bar the width of the melting phase loop for the bcc phase 
is as narrow as 2 wt%Si for Fe-5 wt%Si (Kubaschewski 
1993). Kuwayama and Hirose (2004) from high-pressure 
experiments in a multianvil apparatus suggested that the 
width of the melting loop for the fcc phase would be less 
than 2 wt%Si at 21 GPa. Recently Ozawa et  al. (2016) 
demonstrated from a DAC experiment that the fcc melting 
loop was as narrow as less than 1 wt%Si at 58 GPa. Alfe 
et al. (2002) reported by first-principles calculation that 
silicon is almost equally partitioned between hexagonal 
close-packed (hcp) iron and liquid at 370 GPa. As such the 
width of melting loop of the iron phases seems to become 
narrower with increasing pressure from 1 bar to over 3 
Mbar. However, those studies at pressures greater than 
21 GPa only determined the solid–liquid partitioning of 
silicon and the melting/crystallising point for Fe–Si alloy 
was not determined (Ozawa et al. 2016; Alfe et al. 2002). 
The crystallising (i.e., liquidus) temperature of a Si-bearing 
iron system is important for constraining the temperature at 
the inner core-outer core boundary (ICB, at 330 GPa).

In this study, the mixing properties of Si-bearing iron 
phases are first examined by thermodynamic calculation of a 
phase transition loop. Komabayashi et al. (2019) constrained 
the width of the transition between fcc and hcp structures in 
Fe-4wt%Si to 71 GPa and 2000 K in an internally resistive-
heated diamond anvil cell (DAC) which enabled very precise 
measurements (Fig. 1). Then I extend the thermodynamic 
modelling to higher temperature to calculate the melting 
point under high pressure. By reproducing the reported 
Si partitioning data, I place constraints on the crystallis-
ing points of Si-bearing iron liquids to the inner core pres-
sures. From the constrained melting temperatures over a 
wide pressure range, I evaluate a thermal equation of state 
(EoS) of an Fe–Si liquid. Then, combining Komabayashi 
(2014)’s model for the system Fe–FeO with the results of 
this study, I address the nature of Fe-rich liquids in the sys-
tem Fe–Si–O; I calculate the density and Vp of liquids in 

the ternary system over the outer core pressure range and 
discuss the likely amounts of Si and O in Earth’s outer core. 
I then calculate the density of the solid iron phase precipi-
tating from the determined outer core composition. From 
these calculations, I finally discuss whether or not the system 
Fe–Si–O can represent Earth’s core.

Method

To develop thermodynamic models for the fcc–hcp 
transitions and melting curve in the system Fe–Si, I 
followed the approach in metallurgy to modelling the 
Gibbs free energy (chemical potential) curves of Fe 
phases (e.g., hcp) as a function of the Si content; they 
were modelled between pure Fe and pure Si with the 
same structures. The thermodynamic properties of 
hypothetical fcc and hcp Si at 1 bar were reported by 
the metallurgy literature (e.g., Dinsdale 1991) and their 
mixing properties were also available (e.g., Ohnuma 
et al. 2012). In the system Fe–Si, intermediate phases 
such as FeSi are stable depending on the P–T condition, 
but those phases do not form a solid solution with the 
Fe phase as they have different structures. Instead, one 
can model the chemical potential curve of the Fe solid 
solution between Fe and hypothetical Si with the hcp 

Te
m

pe
ra

tu
re

, K

Pressure, GPa

hcp

fcc pure iro
n

hcp
  +
bcc

Fe-4wt%Si

10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500 fcc+hcp

1st

4th
3rd

2nd

5th 6th

Fig. 1  Calculated fcc–hcp transition boundaries for Fe-4 wt%Si with 
the ideal mixing model (red line) and nonideal mixing model (blue 
dashed line). Experimental results with in situ X-ray diffraction in an 
internally resistive-heated DAC are also plotted: inversed triangle, 
hcp + bcc; square, hcp; normal triangle, fcc + hcp; circle, fcc (Koma-
bayashi et al. 2019). The black line is an experimentally constrained 
fcc–hcp transition boundary in pure iron (Komabayashi et al. 2009). 
The typical experimental uncertainty in temperature is 50 K while the 
data with asterisk have larger uncertainty of about 100 K
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structure; this does not violate the laws of thermodynamics 
as the chemical potentials of the (sub)system Fe–FeSi are 
properly buffered by Fe and FeSi phases when they have 
a common tangent in the potential-composition diagram. 
This is the most reasonable and practical approach as this 
provides the largest applicable range to the solid solution. 
For instance, when different intermediate phases become 
stable at different P–T conditions, one would have to keep 
redefining their new end-members if one has to model 
the system with those intermediate phases, which is not 
sensible at all as this will likely introduce inconsistent 
behaviour of the system on a phase change. Indeed, the 
approach taken in this study was also adopted in Mineral 
Physics as well (Fei and Brosh 2014; Saxena and Eriksson 
2015).

A phase transition in a binary system at constant 
pressure can be modelled with simultaneous equations 
(e.g., Cemič 2005):

where R is the gas constant, and for instance, afcc
Fe

 is the 
activity of Fe in the fcc phase, ΔSfcc−hcp

Fe
 is the entropy 

change upon the fcc–hcp transition for the Fe end-member, 
T
fcc−hcp

Fe
 is the transition temperature for the Fe end-

member. The parameters for the Fe end-member were from 
an experimental determination of the fcc–hcp transition 
(Komabayashi et al. 2009) and a thermodynamic model 
(Komabayashi 2014). For the hypothetical Si end-member 
phases with the fcc and hcp structures, the database for 1 bar 
by Dinsdale (1991) was adopted. The value for ΔSfcc−hcp

Si
 was 

assumed to be constant over the P–T range studied here, 
which is a reasonable assumption for a solid–solid phase 
transition when the detailed thermodynamic data is not 
available.

The activity is described as:

where γ is the activity coefficient and X is the mole frac-
tion of a component. I employed ideal mixing (γ = 1) and 
nonideal mixing for the fcc–hcp transitions. The Gibbs free 
energy of a nonideal solution (Gm) is expressed as (Guggen-
heim 1937; Redlich and Kister 1948; Ohnuma et al. 2012):

(1)ln

(

afcc
Fe

a
hcp

Fe

)

=
ΔS

fcc−hcp

Fe

R

(

1 −
T
fcc−hcp

Fe

T

)

(2)ln

(

afcc
Si

a
hcp

Si

)

=
ΔS

fcc−hcp

Si

R

(

1 −
T
fcc−hcp

Si

T

)

(3)a = �X

(4)

Gm = ◦

GFe ∗ XFe +
◦

GSi ∗ XSi

+ RT
(

XFe lnXFe + XSi lnXSi

)

+ XFeXSi ∗ LFe,Si

where ◦GFe and ◦GSi are the Gibbs energies of the end-mem-
ber pure phases, LFe,Si represents the interaction parameters 
which is based on a power series representation:

Equations (4) and (5) yield,

See Cemič (2005, pp. 194–195) for the details of the deri-
vation of the above equations. In the present calculations, 
Eqs. (6) and (7) were used to obtain γ and (4) and (5) were 
not directly used. We adopted an activity model for the fcc 
phase at 1 bar in the system Fe–Si (Ohnuma et al. 2012). 
As there is no mixing model for the hcp phase available, I 
assumed the same activity model for the fcc and hcp phases 
as they have similar stacking structures.

Results

Fcc–hcp transition in Fe‑4wt%Si

Figure 1 shows calculated phase boundaries for the fcc–hcp 
transitions in Fe-4wt%Si. With all the parameters for Fe 
well-constrained (Komabayashi 2014), the calculated dP/
dT slope of the fcc–hcp transition depends on (i) T fcc−hcp

Si
 

and its pressure dependence and (ii) mixing properties of 
the phases. For (i), the value at 1 bar (Dinsdale 1991) was 
adopted and its pressure dependence was assessed in this 
study so that the calculation reproduces the experimental 
data (Komabayashi et al. 2019) (Fig. 1). For (ii), I tested 
two mixing models for the phases: (a) nonideal mixing and 
(b) ideal mixing. For (a), Ohnuma et al. (2012) proposed a 
sub-regular solution model for the fcc phase at 1 bar. Their 
mixing model was used to calculate the fcc–hcp transition 
boundaries assuming no pressure and temperature depend-
ence on the interaction parameters. As mentioned above, the 
same interaction parameters were employed for the fcc and 
hcp phases. The used parameters are listed in Table 1. Note 
that Asanuma et al. (2008) earlier reported fcc–hcp transi-
tion boundaries in Fe-3.4 wt%Si using a laser-heated DAC, 
and found a much wider fcc + hcp coexistence region than in 
Komabayashi et al. (2019) under the same P–T conditions. 
In addition, the fcc-in boundary in Asanuma et al. (2008) 
was located at temperatures lower than the pure Fe boundary. 

(5)LFe,Si =
∑

n

(

XFe − XSi

)n
∗

n

LFe,Si

(6)

RT ln �Fe = X
2

Si

⌊

0
LFe,Si +

1
LFe,Si

(

3 − 4XSi

)

+2
LFe,Si

(

1 − 2XSi

)(

5 − 6XSi

)⌋

(7)

RT ln �Si =
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1 − XSi

)2⌊0
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1
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(
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)

+2
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)(
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As was extensively discussed in Komabayashi et al. (2019), 
the appearance of fcc peaks in X-ray diffraction patterns was 
not clearly recognized in Asanuma et al. (2008). The results 
of Komabayashi et al. (2019) on the P–T location of the 
fcc–hcp boundaries are consistent with more recent works 
by Fischer et al. (2013) and Tateno et al. (2015).

The calculated transition boundaries with the nonideal 
mixing model yielded a slightly narrower phase loop than 
with the ideal mixing model under high pressures (Fig. 1). 
Figure 2 shows misfits of calculated transition temperatures 
to experimental data. The experimental data points in the 
1st run are at much (a few 10 K) higher temperatures than 
the equilibrium reactions lines, namely they lie well within 
the fcc stability field. In the experiment by Komabayashi 
et al. (2019), the sample was directly heated from 300 K 
to the fcc stability field at 1050–1060 K, and therefore the 
equilibrium point was not bracketed. On the 3rd run, the 
misfits of the fcc-in data point are as large as 160–180 K 
because of larger experimental uncertainties in temperature 
(Komabayashi et al. 2019) (Fig. 2). Those data points were 
not considered when I fitted the thermodynamic parameters 
simply due to the larger experimental uncertainty. Except 
for those data points in the 1st and 3rd runs, the transition 
temperatures were reasonably reproduced by both ideal and 
nonideal mixing models (Fig. 2). Note that the experimental 
data in Figs. 1 and 2 are of the greatest precision in tempera-
ture (50 K) for a diamond anvil cell experiment at tempera-
tures greater than 1400 K (i.e., temperatures are measured 
with the spectroscopic method) as it was conducted in the 
internally-resistive heating system.

The above analysis demonstrates that the ideal mixing 
model can be applied to the hcp and fcc phases under high 
pressures as well as the nonideal model. As the nonideal 
mixing model was established at 1 bar and can be used 
up to 3500 K (Ohnuma et al. 2012), I will use the ideal 

Table 1  Thermodynamic parameters used in the calculations

Pressure, GPa 20 40 60

fcc–hcp transition (ideal and nonideal mixing)

 T fcc−hcp

Fe
, K 1080 1570 2090 Komabayashi et al. (2009)

 T fcc−hcp

Si
, K 1800 + 225*P(in GPa) Dinsdale (1991); this study

 ΔSfcc−hcp
Fe

, J K−1mol−1 4.27 3.53 3.00 Komabayashi (2014)

 ΔSfcc−hcp
Si

, J K−1mol−1 1.00 1.00 1.00 Dinsdale (1991)

Mixing parameters 0LFe,Si
1LFe,Si

2LFe,Si

fcc − 167,164.9 + 42.9734*T(in K) − 44,950.4 19,706.6 Ohnuma et al. (2012)
hcp − 167,164.9 + 42.9734*T(in K) − 44,950.4 19,706.6 Assumed to be the same as 

for the fcc phase

Pressure, GPa 60 330

Melting (ideal mixing)

T
melting

Fe
, K 2910 6380 Komabayashi (2014)

T
melting

Si
, K 2600 6380 This study

ΔS
melting

Fe
, J K−1mol−1 7.87 7.17 Komabayashi (2014)

ΔS
melting

Si
, J K−1mol−1 8.30 10.46 Dinsdale (1991)

T 
(c

al
c-

ob
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Fig. 2  Misfits of calculated transition temperatures to experimental 
data on the fcc–hcp transition boundaries (Komabayashi et al. 2019). 
Typical temperature uncertainties (50  K) are shown as the green 
band. The error bar attached to each data point denotes the range of 
bracketing equilibrium point. In the 1st run, the fcc-in reaction was 
not constrained and the hcp-out reaction might have been overshot in 
the experiment (Komabayashi et al. 2019). For the fcc-in data in the 
3rd run (asterisk) were with a larger temperature uncertainty and not 
considered when evaluating the thermodynamics of the boundaries in 
this study
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mixing model for the phases in the following calculations 
under core P–T conditions.

Melting of Si‑bearing fcc and hcp Fe phases 
under high pressure

The melting temperature of a Si-bearing iron phase 
(fcc or hcp) was not measured at pressures greater than 
21 GPa (Kuwayama and Hirose 2004), although high-
pressure experiments observed melting of the B2 phase 
or eutectic of Fe + B2 in the system Fe–(Ni)–Si at the 
Si-rich side (Si > 10 wt%) (Asanuma et al. 2010; Morard 
et al. 2011; Fischer et al. 2013; Lord et al. 2014). Here I 
estimated the melting temperatures of Si-bearing fcc and 
hcp phases through calculations of the melting phase 
loops. An experimental study reported narrow melting 
loops, < 1 wt%Si, at about 60 GPa (Ozawa et al. 2016) 
and a theoretical study (Alfe et al. 2002) predicted a much 
narrower loop in that Si is almost equally partitioned 
between solid and liquid at 370 GPa. I calculated the 
melting loops using Eqs. (1) and (2) adopting ideal mixing 
as discussed above so that the loops reproduce those Si 
partitioning data. Indeed, Alfe et al. (2002) discussed that 
the deviation from ideal mixing is weak at low Si content.

The parameters for pure Fe melting were from Koma-
bayashi (2014). The entropy changes upon melting for 
the end-member Si ( ΔSmelting

Si
 ) with the fcc and hcp struc-

tures at 1 bar were obtained from Dinsdale (1991) and I 
applied them to high-pressure melting at 60 (fcc) and 330 
(hcp) GPa. The constant ΔSmelting

Si
 without a phase change is 

supported by Richard’s rule (a constant entropy change on 
melting for metals on the order of the gas constant) (e.g., 
Tiwari 1978). The end-member melting temperatures for 
Si ( Tmelting

Si
 ) under high pressures were considered as fol-

lows. The ∆Smelting for both end-members are as large as 
7–10 J/K/mol (cf. ΔSfcc−hcp

Fe
 = 3 J/K/mol at 60 GPa) (Table 1). 

Yamasaki and Banno (1972) analysed effects of ∆S for the 
end-members on the shape of a two-phase loop in a binary 
system (Fig. 3). Assuming both phases are ideal solutions, 
when ∆S is large for both end-members, a phase transition 
loop would be wide, depending on the difference in transi-
tion temperature between the end-members, i.e., ΔTmelting

Fe - Si
 for 

the present discussion (Fig. 3). As such ΔTmelting

Fe - Si
 needs to 

be small in order to account for the reported narrow melting 
loops. Since Tmelting

Fe
 was rather well constrained by the ther-

modynamic database (Komabayashi 2014), the width of the 
calculated melting loop can be narrowed to fit the reported 
Si partitioning data only if Tmelting

Si
 is close to Tmelting

Fe
.

When the melting phase loop was calculated to match 
the data by Ozawa et al. (2016) at 60 GPa, Tmelting

Si
 needed 

to be 2600 K (Fig. 4a) which is only 300 K lower than 
T
melting

Fe
 = 2910 K. Alfe et al. (2002) concluded that Si is 

almost equally partitioned between solid and liquid to 

20 mol%Si (11 wt%Si) at 7000 K and 370 GPa. Assum-
ing an ideal solution for both liquid and solid, an equal 
partitioning of Si between solid and liquid implies com-
position-independent melting, which is expressed as a 
single horizontal line in Fig. 4b (green line). To inves-
tigate the sensitivity of the width of the phase loop to 
T
melting

Si
 and to provide a guide for future experiments, I 

calculated the melting loops at 330 GPa assuming a mini-
mum fractionation detectable by experiment (ca. ± 0.3 
wt%Si at Fe–6 wt%Si) (Fig. 4b, black line). The results 
showed that Tmelting

Si
 was between 6100 and 6660 K when 

T
melting

Fe
 was 6380 K. As such, the small fractionation of 

Si would hardly change the liquidus temperature and the 
melting temperature in the Fe-rich region of the phase 
diagram may be essentially composition independent. 
Note that here I only discussed the melting temperatures 
of the Fe–Si hcp phases at 330 GPa and the eutectic rela-
tions shown in Fig. 4b needs to be examined by experi-
ment and first-principles calculation because there are no 
reports of direct measurements. In particular, the eutectic 

T

SB
SA

A BA BA BA BA B

Fig. 3  Variation in the shape of a two-phase loop in the binary system 
AB as a function of ∆SA and ∆SB (after Yamasaki and Banno 1972). 
Ideal mixing is assumed. When both ∆S are large, the loop is wide, 
unless ∆T is small
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compositions were assumed to be about Fe-6 wt%Si from 
the only experimental constraint of a subsolidus reaction 
between hcp and hcp + B2 occurring at 4750 K at 330 GPa 
for Fe-9 wt%Si (Tateno et al. 2015). The parameters used 
in the calculations are listed in Table 1.

For 1–8 wt%Si-bearing iron systems, which span the 
proposed values for the Si content in Earth’s core (Wade 
and Wood 2005; Antonangeli et al. 2010; Rubie et al. 2011; 
Badro et al. 2015; Antonangeli et al. 2018), the expected 
change of liquidus temperature of Fe due to Si is about 
− 50 K at 60 GPa and about 0 K at 330 GPa (Fig. 4). This 

suggests that the addition of Si to Earth’s core would not 
significantly affect the temperature at the ICB where the 
inner core is believed to be crystallised from the outer core.

Discussions

Phase diagram and liquid EoS of Fe‑4 wt%Si

Figure 5 shows a phase diagram of Fe-4 wt%Si to the ICB 
condition. As discussed above the width of the melting loop 
is very narrow above 60 GPa and I will not distinguish liqui-
dus and solidus in the following discussions. The difference 
in melting point between the alloy and pure Fe is very small 
at 60 GPa and diminishes with increasing pressure, which 
places tight constraints on the P–T location of the melting 
curves of Fe-4 wt%Si from 60 to 360 GPa.

A melting curve constrained over a wide P–T range can 
be used to deduce a thermal EoS for the liquid phase when 
the other thermodynamic parameters are available including 
the EoS of the subsolidus crystalline phase (Komabayashi 
2014). A high-pressure phase equilibrium relation can be 
calculated based on the Gibbs free energy of phases as a 
function of P and T. The Gibbs free energy of a phase at a 
given P–T condition is expressed as:
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Fe
 was 6380  K. The melting 

temperatures of the Fe–Si hcp phases are only discussed in b and the 
eutectic compositions at about 6 wt  %Si were tentatively assumed 
based on the subsolidus phase relations (Tateno et al. 2015)
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where G1bar, T is the Gibbs free energy at 1 bar and T of 
interest and VT is the molar volume at T. The volumetric 
term in Eq. (8) is calculated from a P–V–T EoS of the phase. 
In this study, the room-temperature volume is expressed with 
the Vinet EoS as:

where x ≡ (V/V0)1/3 and, P298, K0, K′, and V0 are the pressure 
at 298  K, the isothermal bulk modulus, its pressure 
derivative, and the molar volume at the reference P–T 
conditions of 1 bar and 298 K, respectively.

The thermal expansion of a phase under high pressure 
was formulated using the Anderson–Grüneisen parameter, 
δT (Anderson et al. 1992):

(8)G = G1bar, T + ∫
P

1bar

VTdP

(9)P298 = 3K0x
−2(1 − x) exp

[

3

2
(K� − 1) ∗ (1 − x)

]

where η ≡ V/V0, δ0 is the value of δT at 1 bar and κ is a 
dimensionless parameter. This equation yields:

where α0 is the thermal expansivity at 1 bar.
G1bar, T was obtained from ideal mixing of the end-

member phases (Komabayashi 2014; Dinsdale 1991) 
(Table 2). The EoS parameters for the Fe-4 wt%Si hcp 
phase were evaluated in Komabayashi et al. (2019) based 
on the parameters of the pure Fe (Dewaele et al. 2006) and 
of Fe-9 wt%Si (Tateno et al. 2015). I have evaluated the EoS 
parameters for the Fe-4 wt%Si liquid phase by calculating 
the melting curve which reproduces that of the pure Fe hcp 
phase at 100–350 GPa (Komabayashi 2014). The obtained 
parameters are listed in Table 3.

(10)
� ln �

� lnV
= �T = �0�

�

(11)
�

�0
= exp

[

−
�0

�
(1 − ��)

]

Table 2  Gibbs energies of pure phases (°G) at 1 bar, T (J·mol−1) = a + bT + cTlnT + dT2 + eT−1 + fT0.5 + gT−9

a fcc iron: Komabayashi (2014); Saxena and Dubrovinsky (1998)
b hcp iron: Komabayashi (2014)
c Liquid iron: Komabayashi (2014); Saxena and Dubrovinsky (1998)
d fcc silicon: Dinsdale (1991)
e hcp silicon: Dinsdale (1991)
f Liquid silicon: Dinsdale (1991)

Phase a b c d e f g

fcc  irona 16,300.921 381.47162 − 52.2754 0.000177578 − 395,355.43 − 2476.28 0
hcp  ironb 12,460.921 386.99162 − 52.2754 0.000177578 − 395,355.43 − 2476.28 0
Liquid  ironc − 9007.3402 290.29866 − 46 0 0 0 0
fcc  silicond 41,542.358 145.481367 − 27.196 0 0 0 − 4.2037E30
hcp  silicone 39,742.358 146.481367 − 27.196 0 0 0 − 4.2037E30
Liquid  siliconf 40,370.523 137.722298 − 27.196 0 0 0 0

Table 3  Thermophysical 
parameters in the Vinet–
Anderson–Grüneisen equation

a fcc iron: Komabayashi (2014)
b hcp iron: Refitted to the data of Dewaele et al. (2006) by Komabayashi (2014)
c hcp Fe-4 wt%Si: Refitted to the data of Komabayashi et al. (2019)
d Liquid iron: Komabayashi (2014)
e Liquid FeO: Komabayashi (2014)
f Liquid Fe-4 wt%Si: all parameters were assessed in this study

Phase V0  (cm3 mol−1) K0 (GPa) K′ α0 (*10−5  K−1) δ0 κ

FCC  irona 6.82 163.4 5.38 7 5.5 1.4
hcp  ironb 6.753 163.4 5.38 5.8 5.1 1.4
hcp Fe-4wt %Sic 6.791 165.5 5.44 5.8 5.1 1.4
Liquid  irond 6.880 148.0 5.8 9.0 5.1 0.56
Liquid  FeOe 13.16 128.0 3.85 4.7 4.5 1.4
Liquid Fe-4 wt%Sif 6.909 150.3 5.81 9.0 5.1 0.56
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The melting of the Fe-4 wt%Si hcp phase at the ICB 
is accompanied with a volume change of 1.6%, which is 
slightly smaller than the case of pure Fe of 2.0%. Selected 
thermodynamic properties for the hcp and liquid phases of 
Fe-4 wt%Si are presented in Table S1.

The derivation of the EoS of the Fe–Si liquid phase 
presented above depends on the choice of melting curves 
of iron. The high-pressure melting curve of iron used in this 
study was from Komabayashi (2014) which is consistent 
with experimental data of Anzellini et al. (2013) and Jackson 
et al. (2013). Very recently a new melting curve of iron was 
proposed by Sinmyo et al. (2019) on the basis of high-P–T 
experiment. Those high-pressure melting data by experiment 
are shown in Fig. 5 for comparison. Sinmyo et al. (2019)’s 
melting points are systematically lower than Anzellini et al. 
(2013)’s data. If one models an EoS for liquid iron using 
Sinmyo et al. (2019)’s melting curve, its resulting density 
will be greater than the case of Komabayashi (2014)’s 
melting curve. However incorporation of the new data into 
the thermodynamic model needs very careful treatment as 
the model by Komabayashi (2014) is consistent with many 
different types of measurements. For example, Komabayashi 
(2014)’s database, starting with the 1 bar metallurgy data, 
is consistent with phase relations in the system Fe–FeO 
determined in multianvil apparatus (e.g., Tsuno et al. 2007) 
and melting points of fcc iron (Jackson et al. 2013) and 
of hcp iron (Anzellini et al. 2013) determined in DACs. 
Also, the eutectic melting relationships of Fe–FeO at high 
pressures calculated by Komabayashi (2014) using Frost 
et al. (2010)’s mixing model were recently confirmed by 
a DAC experiment by Oka et al. (2019). In addition, the 
entropy change on melting of iron in Komabayashi (2014) 
follows Richard’s rule along the melting curve. As such 
the phase relations calculated by Komabayashi (2014) are 
consistent with many experimental data using the DAC and 
multianvil, and of 1 bar measurements. Furthermore, the 
validity of his EoS for liquid iron was confirmed by the first-
principles calculation to 2 terapascals and 10,000 K (Wagle 
and Steinle-Neumann 2019 and reference therein). As such, 
the Fe database of Komabayashi (2014) has been tested and 
validated. The newly proposed melting curve of iron by 
Sinmyo et al. (2019) will have to be tested by comparing 
with those different types of measurements in the future.

Liquids in the system Fe–Si–O and silicon 
and oxygen in the core

Silicon and oxygen are considered to be major light elements 
in the core as a consequence of metal-silicate partitioning 
in the magma ocean during core formation. Although the 
seismic velocity and density of Si- and O-bearing Fe liquids 
were examined and possible ranges for their amounts in 

the core were proposed by first-principles calculation 
(Badro et al. 2014), there is no such a model reported from 
experimental data sources. Here I predict the nature of Si- 
and O-bearing outer cores from the thermodynamic models 
of Fe–FeO (Komabayashi 2014) and Fe–Si (this study) 
which are based on experimental data.

Komabayashi (2014) discussed that the liquids of the 
system Fe and FeO can be modelled with ideal mixing of 
the end-member liquids under core P–T conditions. This 
study has shown that mixing of Fe and Si liquids can be 
represented by ideal mixing as well. I therefore assume that 
mixing of Fe, FeO, and Si liquids would be ideal mixing 
under core P–T conditions. This enables us to compare 
the physical properties of iron liquids and resulting core 
composition with those by theory (Badro et al. 2014) which 
placed the same assumption on the ideality of mixing 
liquids in the system Fe–Si–O for Earth’s core. A more 
recent theoretical work reported that Fe-rich liquids in the 
same ternary system would indeed behave as ideal solutions 
under core conditions (Huang et al. 2019). As Komabayashi 
(2014) demonstrated, the ideality of liquids can be tested 
by comparing calculated phase relations with experimental 
data, such as eutectic temperature, which should be made 
in the near future. Below I discuss the isentrope, density, 
and Vp of hypothetical outer cores in the systems Fe–Si and 
Fe–Si–O.

Figure  6 shows isentropes of the outer cores with 
compositions of Fe (Komabayashi 2014), Fe-5.9 wt%O 
(Komabayashi 2014), Fe-4 wt%Si (this study), and Fe-5.8 
wt%Si–0.8 wt%O (this study, see below). Each isen-
trope starts at the liquidus temperature of the respective 
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composition at the ICB. I assume the liquidus temperature 
of the system Fe–Si–O is the same as of Fe–FeO since the 
addition of Si would not change the liquidus temperature 
under the core pressures. The temperatures at the core-
mantle boundary (CMB) are 4750 K for Fe; 4070 K for 
Fe-5.9 wt%O; 4660 K for Fe-4 wt%Si; 4560 K for Fe-5.8 
wt%Si–0.8 wt%O. The Fe-4 wt%Si-outer core shows a very 
similar isentrope to that of the pure Fe core due to similar 
Grüneisen parameters (Table S1) (Komabayashi 2014). As 
such the thermal structure of the core would not be greatly 
affected by the presence of silicon.

Figure 7 shows calculated density and Vp for each outer 
core composition along its isentrope together with seis-
mologically constrained values (PREM, Dziewonski and 
Anderson 1981). Pure iron shows greater density and slower 
velocity than the PREM (Anderson and Ahrens 1994; Koma-
bayashi 2014). The addition of silicon increases the velocity, 
contrary to the case of oxygen. Figure 8 plots the Si and O 
contents which satisfy the Vp or density of the PREM. The 
intersection of the Vp- and density-satisfying lines yields 
the best-fit solution of Fe-5.8(0.6) wt%Si-0.8(0.6) wt%O, 
taking the errors for density (0.2% from EoS and 0.5% from 
observation) and velocity (0.2% from EoS and 0.2% from 
observation) into account. As discussed in Komabayashi 
(2014), oxygen may not be the primary light element in the 
core mostly due to its distinctive nature reducing the veloc-
ity of liquid iron alloy. Selected thermodynamic properties 
for the best-fit outer core at the CMB and ICB are presented 
in Table 4.

The best-fit composition of the outer core is close to 
the binary system Fe–Si and here I compare it with earlier 
estimates in the system Fe–Si. Fischer et al. (2014) and 
Tateno et al. (2015) estimated the Si content in the outer 
core based on compression experiments on Fe-9 wt%Si hcp 
phases, assuming silicon is the sole light element there. 
Figure 8 shows that the Si content in an Fe–Si liquid needed 
to reconcile the PREM density is 6.2 wt% in my model. 
This value should be consistent with the data in Tateno 
et al. (2015) as the EoS of the Fe–Si hcp phase in this study 
was evaluated based on their data (Komabayashi et  al. 
2019). On the other hand, Fischer et al. (2014)’s estimate 
of the Si content in the outer core was about 11 wt%. The 
outer core thermal profile in Fischer et al. (2014) assumed 
4000 K at the CMB, indicating 600–700 K lower than in 
this study, corresponding to a density difference of about 
1%. Furthermore, the density change upon melting of iron 
at the CMB pressure is 2.6% (Komabayashi 2014) while 
Fischer et al. (2014) assumed between 1 and 2%. Adding 
all these factors up will reduce the estimated Si content in 
the outer core with Fischer et al. (2014)’s model to about 
9 wt%, which is 3% different from the case of this study. 
The remaining unresolved factor likely lies in the thermal 
pressure term in the EoS of the Fe–Si hcp phases as the 
experiments in Fischer et al. (2014) and Tateno et al. (2015) 
were based on different pressure scales. Note that all the data 
in Komabayashi (2014) and Komabayashi et al. (2019) were 
based on pressure scales consistent with Tateno et al. (2015).

Badro et al. (2014) also predicted the effects of sev-
eral light elements on the density and velocity of iron liq-
uid from the first-principles calculations and proposed a 
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seismologically consistent compositional range for the outer 
core. Figure 9 compares the results of this study with the 
range of Si and O contents in Fe–Ni core melt by Badro et al. 
(2014). The outer core composition of this study is placed 
slightly outside their range which was up to 4.5 wt%Si at the 
minimum oxygen content of 1.2 wt%. The major source for 
the discrepancy lies in the effect of oxygen on the velocity 
of iron liquid. Figure 10 shows the effects of silicon and 
oxygen on the liquid iron properties: density, adiabatic bulk 
modulus, and Vp. Komabayashi (2014)’s model predicted a 
negative effect (i.e., decrease) on the velocity by the addi-
tion of oxygen while Badro et al. (2014)’s model predicted 

Table 4  Calculated physical 
properties of Fe–Si–O liquids

KT isothermal bulk modulus
a 6000 K at 330 GPa is below the melting points for Fe and Fe-4wt%Si
b γ, Grüneisen parameter which is given by γ = αVKT/Cv, where Cv is the heat capacity at constant volume

P T Composition V KT α S γb Vp
GPa K cm3 mol−1 GPa *10−5 K−1 J  K−1 mol−1 km s−1

136 4000 Fe 5.182 587 1.78 104.3 1.52 7.77
Fe-5.9wt%O 4.871 551 1.54 108.7 1.07 7.67
Fe-4wt%Si 5.224 589 1.81 104.4 1.63 8.00
Fe-5.8wt%Si-0.8wt%O 5.199 584 1.79 104.3 1.60 8.08

330 6000 Fea 4.250 1224 0.86 108.4 1.39 9.99
Fe-5.9wt%O 3.914 1122 0.79 116.5 0.86 9.69
Fe-4wt%Sia 4.288 1227 0.88 107.5 1.51 10.28
Fe-5.8wt%Si–0.8wt%O 4.258 1214 0.87 107.6 1.46 10.35
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a positive effect. Another recent first-principle calculations 
by Ichikawa and Tsuchiya (2020) predicted similar trends to 
those in Badro et al. (2014) (Fig. 10). However, this does not 
necessarily indicate that the experiment-based and theory-
based models are complete opposite. The result depends 
on the magnitude of reduction of the bulk modulus of iron 
liquid due to oxygen. All Badro et al. (2014), Komabayashi 
(2014), and Ichikawa and Tsuchiya (2020) show that the 
addition of oxygen reduces both the bulk modulus and den-
sity (Fig. 10b). The Vp is reduced in Komabayashi (2014) 
because the bulk modulus decreases more than density by 
mixing an oxygen component. This indicates that increase/
decrease of Vp depends on the difference in the elastic 
parameter between the end-members [i.e., Fe and FeO in 
Komabayashi (2014)]. In his modelling of the EoS of liquid 
phases, Komabayashi (2014) demonstrated that the com-
pressibility of a liquid should be close to that of the coun-
terpart crystalline phase under core pressures, and the small 
bulk modulus of liquid FeO was a consequence of a small 
bulk modulus of solid B1 FeO. The EoS of solid B1 FeO 
was established based on experimental data to 207 GPa and 
3800 K (Fischer et al. 2011; Ozawa et al. 2010) which are 
relevant to core conditions and therefore its elastic behaviour 
can be reliably applied.

Similarly the effects of silicon on the bulk modulus 
are in contrast between the experiment-based (this study) 
and theory-based models (Badro et  al. 2014; Ichikawa 
and Tsuchiya 2020) although all the papers show positive 
effects on the Vp (Fig. 10a). The EoS parameters for the 
Fe–Si hcp phase in this study was based on the compression 
experiments by Tateno et  al. (2015) to 305  GPa who 
demonstrated that the addition of silicon surely increases the 
bulk modulus of hcp iron. Table 3 lists a set of EoS for solids 
and liquids in the system Fe–Si while the first-principles 
calculations did not provide such a self-consistent set of EoS 
for solids and liquids in the system Fe–Si or Fe–O. Further 
comparison is needed to resolve the difference between 
experiment and theory.

The best-fit outer core composition in this study is here 
compared with previously proposed core compositions 
based on metal-silicate partitioning experiments which 
placed constraints on core formation processes. Si-rich 
and O-poor models were proposed by Wade and Wood 
(2005) (5–7 wt%Si + 0 wt%O) and Rubie et  al. (2011) 
(8  wt%Si + 0.5  wt%O), which are close to my best-fit 
outer core composition. In contrast, Siebert et al. (2013) 
proposed an O-rich core with a compositional range of 
1.5–2.2 wt%Si + 4.5–5.5 wt%O. This oxygen-rich composi-
tion falls within the range of Si and O contents by Badro 
et al. (2014) in Fig. 9. Therefore, resolving the above-dis-
cussed discrepancy in the effects of Si and O on liquid iron 
properties will help to narrow down the possible core forma-
tion scenarios.

I also calculated the density of the hcp phase at 330 GPa 
which would crystallise from the Fe-5.8 wt%Si–0.8 wt%O 
outer core melt, i.e., to form the inner core. As oxygen is 
not partitioned into hcp iron upon crystallization (Ozawa 
et al. 2010), the composition of the precipitating phase 
is going to be Fe-5.85 wt%Si. From the EoS of hcp iron 
phases in the system Fe–Si (Dewaele et al. 2006; Tateno 
et  al. 2015), the density of the crystallising phase at 
330 GPa and 6180 K is calculated to be 12.42 g/cm3, 
which is much less dense than the inner core (12.77 g/cm3) 
(Fig. 7). Therefore, while Fe-5.8 wt%Si–0.8 wt%O can 
account for the seismic properties of the outer core, it does 
not produce a consistent inner core phase. This is mainly 
because the melting loop is very narrow and a significant 
amount of silicon is partitioned into the inner core upon 
crystallisation. On the other hand, Ozawa et al. (2016) 
proposed that the Si-rich B2 phase would crystallise in 
an Fe–Si outer core as they reported a Si-poor eutectic 
composition (< 1.5 wt%Si) at 127 GPa. As mentioned 
above, there have been no direct measurements on the 
eutectic composition in the system Fe–Si at 330 GPa, and 
the crystallising phase needs to be examined in the future 
studies. Nevertheless, since the B2 phase contains much 
more silicon than the hcp phase, it should be much less 
dense and cannot account for the inner core density either 
(Ozawa et al. 2016). Therefore, in either case, Earth’s core 
cannot be fully represented by the system Fe–Si–O and it 
must include another light element although silicon and 
oxygen are likely major impurities (Wade and Wood 2005; 
Rubie et al. 2011; Siebert et al. 2013).

Summary and conclusions

In summary: (1) I have constructed a thermodynamic 
model for the fcc–hcp phase transition in the Si-bearing 
iron system based on experimental data; (2) the model 
suggests that mixing of Si and Fe can be represented 
by ideal mixing under high P and T; (3) the melting 
temperature for the Si-bearing iron phases should be 
insensitive to the Si content, otherwise the melting phase 
loop would be too wide because of the large ∆S of melting 
for both end-members; (4) I have evaluated a thermal EoS 
for the Si-bearing iron liquid from the determined melting 
temperatures; (5) Assuming ideal mixing between Fe, 
FeO, and Si, the best-fit composition to the PREM density 
and velocity of the outer core is Fe-5.8 wt%Si–0.8 wt%O; 
(6) the determined outer core composition however does 
not produce a consistent inner core phase; (7) Earth’s core 
must contain another light element in addition to silicon 
and oxygen.
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