71 research outputs found
Slow slip in subduction zones: Reconciling deformation fabrics with instrumental observations and laboratory results
Cataclasites are a characteristic rock type found in drill cores from active faults as well as in exposed fossil subduction faults. Here, cataclasites are commonly associated with evidence for pervasive pressure solution and abundant hydro fracturing. They host the principal slip of regular earthquakes and the family of socalled slow earthquakes (episodic slip and tremor, low to very low frequency earthquakes, etc.). Slip velocities associated with the formation of the different types of cataclasites and conditions controlling slip are poorly constrained both from direct observations in nature as well as from experimental research. In this study, we explore exposed sections of subduction faults and their dominant microstructures. We use recently proposed constitutive laws to estimate deformation rates, and we compare predicted rates with instrumental observations from subduction zones. By identifying the maximum strain rates using fault scaling relations to constrain the fault core thickness, we find that the instrumental shear strain rates identified for the family of “slow earthquakes” features range from 10−3s−1 to 10−5s−1. These values agree with estimated rates for stress corrosion creep or brittle creep possibly controlling cataclastic deformation rates near the failure threshold. Typically, porefluid pressures are suggested to be high in subduction zones triggering brittle deformation and fault slip. However, seismic slip events causing local dilatancy may reduce fluid pressures promoting pressuresolution creep (yielding rates of <10−8 to 10−12s−1) during the interseismic period in agreement with dominant fabrics in plate interface zones. Our observations suggest that cataclasis is controlled by stress corrosion creep and driven by fluid pressure fluctuations at nearlithostatic effective pressure and shear stresses close to failure. We posit that cataclastic flow is the dominant physical mechanism governing transient creep episodes such as slow slip events (SSEs), accelerating preparatory slip before seismic events, and early afterslip in the seismogenic zone
Crust-mantle interactions during subduction of oceanic & continental crust. 10th International Eclogite Conference, Courmayeur (Aosta, Italy) - Post-conference excursions: September 9-10, 2013
Diagnosis Of The Chronic Lymphocytic Leukemia (CLL) Using A Raman-Based Scanner Optimized For Blood Smear Analysis (M3s Project)
Introduction/ Background
In hematology, actual diagnosis of B chronic lymphocyte-leukemia (CLL) is based on the microscopic analysis of cell morphology from patient blood smear. However, new photonic technologies appear promising to facilitate and improve the early diagnosis, prognostic and monitoring of personalized therapy. The development of automated diagnostic approaches could assist clinicians in improving the efficiency and quality of health services, but also reduce medical costs.
Aims
The M3S project aims at improving the diagnosis and prognosis of the CLL pathology by developing a multimodal microscopy platform, including Raman spectrometry, dedicated to the automatic analysis of lymphocytes.
Methods
Blood smears were prepared on glass slides commonly used in pathology laboratories for microscopy. Two types of sample per patient were prepared: a conventional blood smear and a deposit of “pure” lymphocyte subtypes (i.e. normal B, CLL B, T and NK), sorted out in flow cytometry by using the negative double labeling technique. The second sample is used for the construction of a database of spectral markers specific of these different cell types. The preparations were analyzed with the multimodal machine which combines i) a Raman micro-spectrometer, equipped with a 532nm diode laser excitation source; ii) a microscope equipped with 40x and 150x lenses and a high precision xyz motorized stage for scanning the blood smear, and localizing x-y coordinates of representative series (~100 for each patient) of lymphocyte cells before registering three Raman spectra; these cells of interest being previously localized by an original method based on the morphology analysis. After the Raman acquisitions, the conventional blood smears were submitted to immunolabelling using specific antibodies. For the establishment of the Raman classifiers, this post-acquisition treatment was used as reference to distinguish the different lymphocyte sub-populations. Raman data were then analyzed using chemometric processing and supervised statistical classifiers in order to construct a spectral library of markers highly specific of the lymphocyte type and status (normal or pathological).
Results
Currently, a total of 60 patients (CLL and healthy) were included in the study. Various classification methods such as LDA (Linear Discriminant Analysis), PLS-DA (Partial Least Square Discriminant Analysis), RF (Random Forest) and SVM (Support Vector Machine), were tested in the purpose to distinguish tumoral B lymphocytes from other cell types. These classification algorithms were combined with feature selection approaches. The best performances were around 70% of correct identification when a three-class model (B-CLL vs B-normal vs T and NK lymphocytes) was considered, and 80% in case of a two-class model (B-CLL vs B-normal lymphocytes). These encouraging results demonstrate the potential of Raman micro-spectroscopy coupled to supervised classification algorithms for leukemic cell classification. The approach can find interest more generally in the field of cyto-hematology. Further developments will concern the integration of additional modality such as Quantitative Phase Imaging on one hand to speed the exploration process of cells of interest to be probed, and on the other hand to extract additional characteristics likely to be informative for CLL diagnosis. In addition, the identification of prognostic markers will be investigated by confronting the photonic data to clinical patient information.
Garnet fracturing reveals ancient unstable slip events hosted in plate interface metasediments
Supplemental Material: The rise and demise of deep accretionary wedges: A long-term field and numerical modeling perspective
Methods and supplemental figures of the numerical experiments.</jats:p
Supplemental Videos: The rise and demise of deep accretionary wedges: A long-term field and numerical modeling perspective
Five videos of the numerical experiments.</jats:p
Supplemental Material: The rise and demise of deep accretionary wedges: A long-term field and numerical modeling perspective
Five videos of the numerical experiments.</jats:p
Supplemental Material: The rise and demise of deep accretionary wedges: A long-term field and numerical modeling perspective
Methods and supplemental figures of the numerical experiments.</jats:p
Supplemental Videos: The rise and demise of deep accretionary wedges: A long-term field and numerical modeling perspective
Five videos of the numerical experiments.</jats:p
Initial water budget: The key to detaching large volumes of eclogitized oceanic crust along the subduction channel?
International audienc
- …
