967 research outputs found
Thrust chamber material technology program
This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties
Live Migration Downtime Analysis of a VNF Guest for a Proposed Optical FMC Network Architecture
Fixed Mobile Convergence (FMC) implies use of a shared optical fronthaul network infrastructure able to carry transparently both fixed and mobile traffic including Wi-Fi, Mobile and fixed Ethernet. Network Function Virtualization (NFV) is a main enabler for FMC using a shared infrastructure for fixed and mobile gateways. Live migration, a virtualization key-feature, offers load-balancing, increased energy efficiency, application elasticity and other worthy advantages. This paper presents the evaluation of migrating a VNF over an FMC infrastructure. Our results show that, performing a livemigration over a dedicated connection yielded zero downtime and met a benchmark delay. The following scenario, where the ongoing connection is re-routed on a different optical path, shows the successful completion of the migration with an increase in delay of 2.4 seconds (22% higher than the benchmark) and only 2.1 seconds downtime Fixed Mobile Convergence (FMC) implies use of a shared optical fronthaul network infrastructure able to carry transparently both fixed and mobile traffic including Wi-Fi, Mobile and fixed Ethernet. Network Function Virtualization (NFV) is a main enabler for FMC using a shared infrastructure for fixed and mobile gateways. Live migration, a virtualization key-feature, offers load-balancing, increased energy efficiency, application elasticity and other worthy advantages. This paper presents the evaluation of migrating a VNF over an FMC infrastructure. Our results show that, performing a live migration over a dedicated connection yielded zero downtime and met a benchmark delay. The following scenario, where the ongoing connection is re-routed on a different optical path, shows the successful completion of the migration with an increase in delay of 2.4 seconds (22% higher than the benchmark) and only 2.1 seconds downtime
Magnetic Neutron Scattering of Thermally Quenched K-Co-Fe Prussian Blue Analogue Photomagnet
Magnetic order in the thermally quenched photomagnetic Prussian blue analogue
coordination polymer K0.27Co[Fe(CN)6]0.73[D2O6]0.27 1.42D2O has been studied
down to 4 K with unpolarized and polarized neutron powder diffraction as a
function of applied magnetic field. Analysis of the data allows the onsite
coherent magnetization of the Co and Fe spins to be established. Specifically,
magnetic fields of 1 T and 4 T induce moments parallel to the applied field,
and the sample behaves as a ferromagnet with a wandering axis
UVB radiation induced effects on cells studied by FTIR spectroscopy
We have made a preliminary analysis of the results about the eVects on
tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose
of 310 mJ/cm^2) with and without a vegetable mixture. In the present study, we
have used two techniques: Fourier transform infrared spectroscopy (FTIR) and
flow cytometry. FTIR spectroscopy has the potential to provide the
identiWcation of the vibrational modes of some of the major compounds (lipid,
proteins and nucleic acids) without being invasive in the biomaterials. The
second technique has allowed us to perform measurements of cytotoxicity and to
assess the percentage of apoptosis. We already studied the induction of
apoptotic process in the same cell line by UVB radiation; in particular, we
looked for correspondences and correlations between FTIR spetroscopy and flow
cytometry data finding three highly probable spectroscopic markers of apoptosis
(Pozzi et al. in Radiat Res 168:698-705, 2007). In the present work, the
results have shown significant changes in the absorbance and spectral pattern
in the wavenumber protein and nucleic acids regions after the treatments
Ears of the Armadillo: Global Health Research and Neglected Diseases in Texas
Neglected tropical diseases (NTDs) have\ud
been recently identified as significant public\ud
health problems in Texas and elsewhere in\ud
the American South. A one-day forum on the\ud
landscape of research and development and\ud
the hidden burden of NTDs in Texas\ud
explored the next steps to coordinate advocacy,\ud
public health, and research into a\ud
cogent health policy framework for the\ud
American NTDs. It also highlighted how\ud
U.S.-funded global health research can serve\ud
to combat these health disparities in the\ud
United States, in addition to benefiting\ud
communities abroad
The Q^2-Dependence of Nuclear Transparency for Exclusive Production
Exclusive coherent and incoherent electroproduction of the meson
from H and N targets has been studied at the HERMES experiment as a
function of coherence length (), corresponding to the lifetime of hadronic
fluctuations of the virtual photon, and squared four-momentum of the virtual
photon (). The ratio of N to H cross sections per nucleon,
known as nuclear transparency, was found to increase (decrease) with increasing
coherence length for coherent (incoherent) electroproduction. For
fixed coherence length, a rise of nuclear transparency with is observed
for both coherent and incoherent production, which is in agreement
with theoretical calculations of color transparency.Comment: 5 pages, 4 figure
Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target
Single-spin asymmetries in the semi-inclusive production of charged pions in
deep-inelastic scattering from transversely and longitudinally polarized proton
targets are combined to evaluate the subleading-twist contribution to the
longitudinal case. This contribution is significantly positive for (\pi^+)
mesons and dominates the asymmetries on a longitudinally polarized target
previously measured by \hermes. The subleading-twist contribution for (\pi^-)
mesons is found to be small
Double hadron leptoproduction in the nuclear medium
First measurement of double-hadron production in deep-inelastic scattering
has been measured with the HERMES spectrometer at HERA using a 27.6 GeV
positron beam with deuterium, nitrogen, krypton and xenon targets. The
influence of the nuclear medium on the ratio of double-hadron to single-hadron
yields has been investigated. Nuclear effects are clearly observed but with
substantially smaller magnitude and reduced -dependence compared to
previously measured single-hadron multiplicity ratios. The data are in fair
agreement with models based on partonic or pre-hadronic energy loss, while they
seem to rule out a pure absorptive treatment of the final state interactions.
Thus, the double-hadron ratio provides an additional tool for studying
modifications of hadronization in nuclear matter
Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface
The nuclear polarization of molecules formed by recombination
of nuclear polarized H atoms on the surface of a storage cell initially coated
with a silicon-based polymer has been measured by using the longitudinal
double-spin asymmetry in deep-inelastic positron-proton scattering. The
molecules are found to have a substantial nuclear polarization, which is
evidence that initially polarized atoms retain their nuclear polarization when
absorbed on this type of surfac
- …
