306 research outputs found

    Carbon nanotube four-terminal devices for pressure sensing applications

    Get PDF
    Carbon nanotubes (CNTs) are of high interest for sensing applications,owing to their superior mechanical strength, high Young’s modulus and low density. In this work, we report on a facile approach for the fabrication of carbon nanotube devices using a four terminal configuration. Oriented carbon nanotube films were pulled out from a CNT forest wafer and then twisted into a yarn. Both the CNT film and yarn were arranged on elastomer membranes/diaphragms which were arranged on a laser cut acrylic frame to form pressure sensors. The sensors were calibrated using a precisely controlled pressure system, showing a large change of the output voltage of approximately 50 mV at a constant supply current of 100 μA and under a low applied pressure of 15 mbar. The results indicate the high potential of using CNT films and yarns for pressure sensing applications

    Resting CD4+ effector memory T cells are precursors of bystander-activated effectors: a surrogate model of rheumatoid arthritis synovial T-cell function.

    Get PDF
    BACKGROUND: Previously we described a system whereby human peripheral blood T cells stimulated for 8 days in a cytokine cocktail acquired effector function for contact-dependent induction of proinflammatory cytokines from monocytes. We termed these cells cytokine-activated (Tck) cells and found that the signalling pathways elicited in the responding monocytes were identical whether they were placed in contact with Tck cells or with T cells isolated from rheumatoid arthritis (RA) synovial tissue. METHODS: Here, using magnetic beads and fluorescence-activated cell sorting, we extensively phenotype the Tck effector cells and conclude that effector function resides within the CD4+CD45RO+, CCR7-, CD49dhigh population, and that these cells are derived from the effector memory CD4+ T cells in resting blood. RESULTS: After stimulation in culture, these cells produce a wide range of T-cell cytokines, undergo proliferation and differentiate to acquire an extensively activated phenotype resembling RA synovial T cells. Blocking antibodies against CD69, CD18, or CD49d resulted in a reduction of tumour necrosis factor-alpha production from monocytes stimulated with CD4+CD45RO+ Tck cells in the co-culture assay. Moreover, blockade of these ligands also resulted in inhibition of spontaneous tumour necrosis factor-alpha production in RA synovial mononuclear cell cultures. CONCLUSION: Taken together, these data strengthen our understanding of T-cell effector function, highlight the multiple involvement of different cell surface ligands in cell-cell contact and, provide novel insights into the pathogenesis of inflammatory RA disease

    Thin Circular Diamond Membrane with Embedded Nitrogen-Vacancy Centers for Hybrid Spin-Mechanical Quantum Systems

    Get PDF
    Coupling mechanical degrees of freedom to single well-controlled quantum systems has become subject to intense research recently. Here, we report on the design, fabrication, and characterization of a diamond architecture consisting of a high-quality thin circular diamond membrane with embedded near-surface nitrogen-vacancy centers (NVCs). To demonstrate this architecture, we employ the NVCs by means of their optical and spin interfaces as nanosensors of the motion of the membrane under static pressure and in-resonance vibration. We also monitor the static residual stress within the membrane using the same method. Driving the membrane at its fundamental resonance mode, we observe coupling of this vibrational mode to the spin of the NVCs. Our realization of this architecture can manifest the applications of diamond structures in 3D piezometry such as mechanobiology and vibrometry, as well as mechanically mediated spin-spin coupling in quantum-information science

    Comparative evaluation of NOTCH signaling molecules in the endometrium of women with various gynecological diseases during the window of implantation

    Get PDF
    Objective(s): NOTCH signaling pathway is well known for its role in cell fate, cell survival, cell differentiation, and apoptosis. Some of the NOTCH signaling genes are critical for endometrial function and implantation in animals and appear to play a similar role in humans. The purpose of the current study was to investigate the potential roles of some main components of the NOTCH family in human endometrium during implantation period in common gynecological diseases. Materials and Methods: Endometrial NOTCH receptors NOTCH1, 3, 4 and ligand JAG1, 2 and survivin mRNA expression were investigated using the Q-PCR technique and the amount of the JAG1, 2 proteins was also determined by Western blot. Samples were obtained from 12 patients with endometriosis, 12 patients with repeated implantation failure (RIF), 12 patients with Polycystic Ovary Syndrome (PCOS) and 10 healthy fertile women as a control group. Data were analyzed using SPSS version 18. Group comparisons were performed by one-way ANOVA or Kruskal-Wallis. Results: All patient groups failed to show the expected mid-luteal increase in NOTCH1, JAG 1, 2, and survivin expression as documented in the control group. Moreover, a significant rise in NOTCH3 expression levels was found only in PCOS women. There was a direct correlation between gene expression and protein level for JAG 1, 2. Conclusion: Aberrant NOTCH signaling molecules expression suggests that altered development of the endometrium at the molecular level may be associated with the impaired decidualization and implantation failure in gynecological disorders such as endometriosis, PCOS, and RIF. © 2019, Mashhad University of Medical Sciences. All rights reserved

    Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing

    Get PDF
    We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multifunctional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future

    Views and Experiences of Sex, Sexuality and Relationships Following Spinal Cord Injury: A Systematic Review and Narrative Synthesis of the Qualitative Literature

    Get PDF
    Research examining the effects of spinal cord injury on sexuality has largely focused on physiological functioning and quantification of dysfunction following injury. This paper reports a systematic review of qualitative research that focused on the views and experiences of people with spinal cord injury on sex and relationships. The review addressed the following research question: What are the views and experiences of people with spinal cord injury of sex, sexuality and relationships following injury? Five databases were relevant and employed in the review: CINAHL (1989-2016 only), PsychInfo, PubMed, Scopus and Web of Science, for research published between 1 January 1980 and 30 November 2019. After removing duplicates, 257 records remained and were screened using a two-stage approach to inclusion and quality appraisal. Following screening, 27 met the criteria for inclusion and are reported in the paper. The review includes studies from fifteen countries across five continents. Two main approaches to data analysis summary and thematic synthesis were undertaken to analyze the qualitative data reported in the papers. The analysis revealed four main themes: sexual identity; significant and generalized others, sexual embodiment; and; sexual rehabilitation and education

    Carbon nanotube four-terminal devices for pressure sensing applications

    Get PDF
    Carbon nanotubes (CNTs) are of high interest for sensing applications, owing to their superior mechanical strength, high Young’s modulus and low density. In this work, we report on a facile approach for the fabrication of carbon nanotube devices using a four terminal configuration. Oriented carbon nanotube films were pulled out from a CNT forest wafer and then twisted into a yarn. Both the CNT film and yarn were arranged on elastomer membranes/diaphragms which were ar-ranged on a laser cut acrylic frame to form pressure sensors. The sensors were calibrated using a precisely controlled pressure system, showing a large change of the output voltage of approximately 50 mV at a constant supply current of 100µA and under a low applied pressure of 15 mbar. The results indicate the high potential of using CNT films and yarns for pressure sensing applications
    corecore