47 research outputs found

    A pair of non-optimal codons are necessary for the correct biosynthesis of the Aspergillus nidulans urea transporter, UreA

    Get PDF
    In both prokaryotic and eukaryotic genomes, synonymous codons are unevenly used. Such differential usage of optimal or non-optimal codons has been suggested to play a role in the control of translation initiation and elongation, as well as at the level of transcription and mRNA stability. In the case of membrane proteins, codon usage has been proposed to assist in the establishment of a pause necessary for the correct targeting of the nascent chains to the translocon. By using as a model UreA, the Aspergillus nidulans urea transporter, we revealed that a pair of non-optimal codons encoding amino acids situated at the boundary between the N-terminus and the first transmembrane segment are necessary for proper biogenesis of the protein at 37°C. These codons presumably regulate the translation rate in a previously undescribed fashion, possibly contributing to the correct interaction of ureA-translating ribosome-nascent chain complexes with the signal recognition particle and/or other factors, while the polypeptide has not yet emerged from the ribosomal tunnel. Our results suggest that the presence of the pair of non-optimal codons would not be functionally important in all cellular conditions. Whether this mechanismwould affect other proteins remains to be determined

    Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus

    Get PDF
    Incluye más de 100 autoresBackground: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. Results: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. Conclusions: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi

    [3H]Adenine is a suitable radioligand for the labeling of G protein-coupled adenine receptors but shows high affinity to bacterial contaminations in buffer solutions

    Get PDF
    [3H]Adenine has previously been used to label the newly discovered G protein-coupled murine adenine receptors. Recent reports have questioned the suitability of [3H]adenine for adenine receptor binding studies because of curious results, e.g. high specific binding even in the absence of mammalian protein. In this study, we showed that specific [3H]adenine binding to various mammalian membrane preparations increased linearly with protein concentration. Furthermore, we found that Tris-buffer solutions typically used for radioligand binding studies (50 mM, pH 7.4) that have not been freshly prepared but stored at 4°C for some time may contain bacterial contaminations that exhibit high affinity binding for [3H]adenine. Specific binding is abolished by heating the contaminated buffer or filtering it through 0.2-μm filters. Three different, aerobic, gram-negative bacteria were isolated from a contaminated buffer solution and identified as Achromobacter xylosoxidans, A. denitrificans, and Acinetobacter lwoffii. A. xylosoxidans, a common bacterium that can cause nosocomial infections, showed a particularly high affinity for [3H]adenine in the low nanomolar range. Structure–activity relationships revealed that hypoxanthine also bound with high affinity to A. xylosoxidans, whereas other nucleobases (uracil, xanthine) and nucleosides (adenosine, uridine) did not. The nature of the labeled site in bacteria is not known, but preliminary results indicate that it may be a high-affinity purine transporter. We conclude that [3H]adenine is a well-suitable radioligand for adenine receptor binding studies but that bacterial contamination of the employed buffer solutions must be avoided

    Identification of glucose transporters in Aspergillus nidulans

    Get PDF
    o characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.The authors would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Characterization and kinetics of the major purine transporters in Aspergillus fumigatus

    No full text
    Three genes encoding putative purine transporters have been identified in silico in the genome of Aspergillus fumigatus by their very close similarity of their translation products to well-studied homologues in A. nidulans. Two of these transporters, called AfUapC and AfAzgA, were found responsible for bulk uptake of purines and studied in detail herein. Genetic knock-out analysis, regulation of transcription, direct purine uptake assays and heterologous expression in A. nidulans have unequivocally shown that AfUapC and AfAzgA are high-affinity, high-capacity, purine/H+ symporters, the first being specific for xanthine, uric acid and oxypurinol, whereas the second for adenine, hypoxanthine, guanine and purine. The expression of these transporters is primarily controlled at the level of transcription. Transcription of both genes is purine-inducible, albeit with different efficiencies, whereas AfuapC is also ammonium-repressible. We characterised in detail the kinetics of the AfUapC and AfAzgA transporters, both in A. fumigatus and in A. nidulans, using a plethora of possible purine substrates. This analysis led us to propose kinetic models describing the molecular interactions of AfUapC and AfAzgA with purines. These models are discussed comparatively with analogous models from other purine transporters from fungi, bacteria and humans, and within the frame of a systematic development of novel purine-related antifungals. © 2007 Elsevier Inc. All rights reserved

    Secretory vesicle polar sorting, endosome recycling and cytoskeleton organization require the AP-1 complex in aspergillus nidulans

    No full text
    The AP-1 complex is essential for membrane protein traffic via its role in the pinching-off and sorting of secretory vesicles (SVs) from the trans-Golgi and/or endosomes. While its essentiality is undisputed in metazoa, its role in simpler eukaryotes seems less clear. Here, we dissect the role of AP-1 in the filamentous fungus Aspergillus nidulans and show that it is absolutely essential for growth due to its role in clathrin-dependent maintenance of polar traffic of specific membrane cargoes toward the apex of growing hyphae. We provide evidence that AP-1 is involved in both anterograde sorting of RabERab11-labeled SVs and RabA/BRab5-dependent endosome recycling. Additionally, AP-1 is shown to be critical for microtubule and septin organization, further rationalizing its essentiality in cells that face the challenge of cytoskeleton-dependent polarized cargo traffic. This work also opens a novel issue on how nonpolar cargoes, such as transporters, are sorted to the eukaryotic plasma membrane. © 2018 by the Genetics Society of America

    Substitution F569S converts UapA, a specific uric acid-xanthine transporter, into a broad specificity transporter for purine-related solutes

    No full text
    UapA, a highly specific uric acid-xanthine transporter in Aspergillus nidulans, is a member of a large family of nucleobase-ascorbate transporters conserved in all domains of life. We have investigated structure-function relationships in UapA, by studying chimeric transporters and missense mutations, and showed that specific polar or charged an-Lino acid residues (E412, E414, Q449, N450, T457) on either side of an amphipathic alpha -helical transmembrane segment (TMS10) are critical for purine binding and transport. Here, the mutant Q449E, having no uric acid-xanthine transport activity at 25 degreesC, was used to isolate second-site revertants that restore function. Seven of them were found to have acquired the capacity to transport novel substrates (hypoxanthine and adenine) in addition to uric acid and xanthine. All seven revertants were found to carry the mutation F569S within the last transmembrane segment (TMS14) of UapA. Further kinetic analysis of a selected suppressor showed that UapA-Q449E/F569S transports with high affinity (K-M values of 4-10 muM) xanthine, hypoxanthine and uracil. Uptake competition experiments suggested that UapA-Q449E/F569S also binds guanine, 6-thioguanine, adenosine or ascorbic acid. A strain carrying mutation F569S by itself conserves high-capacity, high-affinity (K-M values of 1.5-15 muM), transport activity for purine-uracil transport. Compared to UapA-Q449E/F569S, UapA-F569S has a distinct capacity to bind several nucleobase-related compounds and different kinetic parameters of transport. These results show that molecular determinants external to the central functional domain (L9-TMS10-L10) are critical for the uptake specificity and transport kinetics of UapA. (C) 2001 Academic Press

    Substrate specificity of the furE transporter is determined by cytoplasmic terminal domain interactions

    No full text
    FurE, a member of the Nucleobase Cation Symporter 1 transporter family in Aspergillus nidulans, is specific for allantoin, uric acid (UA), uracil, and related analogs. Herein, we show that C- or N-terminally-truncated FurE transporters (FurE-∆C or FurE-∆Ν) present increased protein stability, but also an inability for UA transport. To better understand the role of cytoplasmic terminal regions, we characterized genetic suppressors that restore FurE-∆C-mediated UA transport. Suppressors map in the periphery of the substrate-binding site [Thr133 in transmembrane segment (TMS)3 and Val343 in TMS8], an outward-facing gate (Ser296 in TMS7, Ile371 in TMS9, and Tyr392 and Leu394 in TMS10), or in flexible loops (Asp26 in LN, Gly222 in L5, and Asn308 in L7). Selected suppressors were also shown to restore the wild-type specificity of FurE-∆Ν, suggesting that both C- and/or N-terminal domains are involved in intramolecular dynamics critical for substrate selection. A direct, substrate-sensitive interaction of C- and/or N-terminal domains was supported by bimolecular fluorescence complementation assays. To our knowledge, this is the first case where not only the function, but also the specificity, of a eukaryotic transporter is regulated by its terminal cytoplasmic regions. © 2017 by the Genetics Society of America
    corecore