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In both prokaryotic and eukaryotic genomes, synonymous
codons are unevenly used. Such differential usage of optimal or
non-optimal codons has been suggested to play a role in the
control of translation initiation and elongation, as well as at the
level of transcription and mRNA stability. In the case of
membrane proteins, codon usage has been proposed to assist in
the establishment of a pause necessary for the correct targeting
of the nascent chains to the translocon. By using as a model
UreA, the Aspergillus nidulans urea transporter, we revealed that
a pair of non-optimal codons encoding amino acids situated at
the boundary between the N-terminus and the first
transmembrane segment are necessary for proper biogenesis of
the protein at 37°C. These codons presumably regulate the
translation rate in a previously undescribed fashion, possibly
contributing to the correct interaction of ureA-translating
ribosome-nascent chain complexes with the signal recognition
particle and/or other factors, while the polypeptide has not yet
emerged from the ribosomal tunnel. Our results suggest that the
presence of the pair of non-optimal codons would not be
functionally important in all cellular conditions. Whether this
mechanismwould affect other proteins remains to bedetermined.
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1. Introduction

Most amino acids are encoded by more than one codon, each of which is usually used with unequal
frequencies across the genomes of different organisms or even across a single gene, a phenomenon known
as ‘codon usage bias’ [1,2]. Among genes, this phenomenon has been explained in terms of the balance
between biases generated from mutation, natural selection and random genetic drift [3,4]. In several
organisms, a close positive correlation has been established between gene expression levels and the
frequencies of usage of certain codons, which usually match the most abundant transfer RNAs (tRNAs),
this correlation being attributed to natural selection leading to fast and accurate translation [5–10]. This
was shown to be the case for eight Aspergillus species for each of which, using available information on
whole genome sequences and microarray data, a set of translational optimal codons could be defined [11].

Several lines of research suggest a role of codon usage in the control of translation initiation and
elongation, as well as at the level of transcription and messenger RNA (mRNA) stability (for recent,
excellent reviews see [12–15]). Translation rate control, in turn, has been related to the establishment
of proper folding patterns, and hence functionality [15–25].

Owing to their complex structure and hydrophobic nature, polytopic membrane proteins pose an
interesting challenge for the study of their folding mechanisms. In eukaryotes, these multispanning
membrane proteins undergo a special biogenesis pathway through which they are co-translationally
inserted into the endoplasmic reticulum (ER) membrane [26–29]. At early stages, during translation, the
signal recognition particle (SRP) recognizes specialized signal sequences or hydrophobic motifs in
peptides, which are destined for the membrane and installs a pause in the process. This pause is
supposed to ensure an appropriate timing for the targeting of the translating ribosomes to the translocon,
through which the different transmembrane segments are finally inserted into the ER membrane [30].
Besides the aforementioned influence of codon usage on translation elongation rates and hence folding
and function, other roles specific to the special co-translational biosynthesis of membrane proteins have
been disclosed. In Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans, bioinformatic studies
have revealed that membrane proteins are enriched in long, statistically significant, non-optimal codon
clusters, which tend to occur about 45 and 70 codons after encoded hydrophobic stretches. These clusters
have been suggested to impose pauses for correct membrane protein recognition and targeting (+45
cluster) and for correct insertion and folding (+70 cluster) [31,32]. Another study indicates that N-terminal
positioned, long clusters of non-optimal codons, which are moreover conserved among evolutionary-
related proteins, are found in membrane proteins and are proposed to be required for the proper
interaction with other proteins needed for correct targeting and/or insertion [33]. The in vivo significance
of codon usage in membrane protein biogenesis has been less explored. In the human multidrug
resistance 1 gene MDR1, a single nucleotide polymorphism, resulting in a synonymous change, alters the
conformation and function of the encoded polypeptide. The authors propose that this change presumably
alters the timing of co-translational folding and insertion of the polypeptide into the membrane [34]. More
recently, studies employing ribosome profiling in yeast revealed the presence of non-optimal codon
clusters (REST elements, for mRNA-encoded slowdown of translation elements) placed 35–40 codons
downstream of the region encoding the SRP-binding site. These REST elements were shown to enhance
the recognition by SRP and hence to be necessary for the efficient translocation of membrane proteins [35].

In this study,we have developed amodel that addresses the question of how codon usage could affect the
folding, function and localization of membrane proteins, using the high-affinity urea/H+ symporter of the
ascomycete fungus A. nidulans, UreA, as a model [36,37]. We identified a pair of non-optimal, conserved
codons coding for amino acids localized just at the boundary between the N-terminus of the protein and
the predicted first helical transmembrane segment (TMS), whose optimization leads to a deficiency in
UreA synthesis at the optimal growth temperature of 37°C, while at 25°C, the defect becomes much less
severe. Our in vivo system supports the idea of an mRNA-encoded pause involved in the first steps of
UreA synthesis and sorting to the membrane. The differences observed at the two assayed temperatures
suggest that the relevance of this pausing event would depend on the cellular conditions playing on
factors such as general translation rate, availability of folding chaperones and targeting machinery, etc.

2. Results
2.1. Identification of a pair of conserved, non-optimal codons in UreA and its orthologues
We reasoned that if UreA presents a codon-usage bias across its coding sequence, and if this bias has a
role in protein expression and/or functionality, we could expect to find some synonymous codon usage
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conservation between UreA and its orthologues in other Aspergilli. This conservation may not only

consider the average frequency of usage of the gene but also the localization of optimal and non-
optimal codons in specific regions of the gene in relation to the encoded protein structure.

Following this reasoning, the coding DNA sequences of the UreA orthologues in the eight Aspergillus
species with known codon usage [11] were aligned, and the relative synonymous codon usage (RSCU)
for each codon in highly expressed genes (HEGs) was determined. The RSCU is the ratio of the
observed frequency of synonymous codons in a group of genes to the expected frequency, if all the
codons coding for the same amino acid were used equally. It is a measure of the synonymous codon
usage bias for each triplet, irrespectively of amino acid composition [3]. Thus, synonymous codons
with RSCU values close to 1 are interpreted as not biased, that is, used as expected under null or
marginal codon usage bias. RSCU values above 1 are interpreted as positive biased or used more
than expected. In HEGs, these triplets are considered as translationally optimal codons, maintained by
natural selection. It has been shown that these triplets are translated at higher speed and more
accurately (reviewed by Sharp et al. [38]). Finally, RSCU values close to 0 are synonymous codons that
are avoided in a certain group of genes.

A pair of 100% conserved, non-optimal and very rarely used triplets were identified in the eight
Aspergilli. These correspond to codons 24 and 25 in the A. nidulans ureA sequence (figure 1). These two
codons are CAA(Gln) and GGG(Gly) and have RSCU(Total coding sequences, CDS) values of 0.78 and 0.77,
respectively, and RSCU(HEGs) values of 0.47 for CAA and 0.18 for GGG (see electronic supplementary
material, table S1). After secondary structure predictions, performed with the TMHMM server (http://
www.cbs.dtu.dk/services/TMHMM/) (see the electronic supplementary material, S1), we determined
that in all of the orthologues, these two conserved non-optimal codons encode amino acidic residues
lying at the boundary between the N-terminus of the protein and the predicted first TMS (figure 1).
2.2. The synonymous mutation of non-optimal codons 24 and 25 causes a defect in UreA’s
urea transport

To assess the functional relevance of conserved, non-optimal codons 24 and 25, we substituted them
by their optimal synonymous counterparts, both individually and simultaneously. In the case of
Gln(24), there is a single change option, so CAA was changed into CAG (RSCU(Total CDS) = 1.22,
RSCU(HEGs) = 1.56). GGG coding for Gly(25) was substituted with GGT (RSCU(Total CDS)= 0.94,
RSCU(HEGs) = 1.83). CAG(Gln) and GGT(Gly) triplets are significantly over-represented in HEGs and are
considered as the unique putative optimal codons for the amino acid they encode [11] (see the
electronic supplementary material, table S1).

Mutations were introduced by fusion polymerase chain reaction (Fusion-PCR) as described inMaterial
andMethods. Genomic DNA from a strain carrying awild-type (wt) UreA-green fluorescent protein (GFP)
fusion was used as template, so that the subcellular localization of the resulting mutant UreA-GFP
fusions can be easily assessed by epifluorescence microscopy. The constructs were transformed in a
ureAΔ strain to obtain single copy transformants integrated into the ureA locus (ureA2425 strains).
Strains bearing ureA::gfp fusions behave exactly as wild-type strains in terms of growth on urea, urea
transport and localization of the transporter to the membrane, indicating that these fusions are fully
functional [36]. Mutant UreA functionality can be rapidly and simply evaluated by plate growth tests
on urea or its toxic analogue 2-thiourea. Urea uptake capacity can be assessed by 14C-urea transport assays.

When codons 24 and 25 were individually mutated, the resulting mutant versions of ureA (strains
ureA24 and ureA25, respectively) did not show any differences in growth on urea or 2-thiourea at
37°C or 25°C, with respect to the wt (figure 2). Transport assay results were in agreement with this
observation (figure 3a). Proteins bearing the single mutations are localized to the cell membrane in
both cases, with no obvious changes in fluorescence levels (electronic supplementary material, figure S3).

However, when both non-optimal codons were mutated simultaneously (ureA2425 mutant), growth
at 37°C on 0.625–5 mM urea as a sole nitrogen source was intermediate between that of a wt and a ureAΔ
strain. Accordingly, this mutant strain was partially resistant to the toxic urea analogue 2-thiourea, which
is also transported into the cell through UreA [36,39]. It exhibited an intermediate phenotype between the
complete resistance of the ureA knock-out strain and the sensitivity of the wt, which presents only a
residual growth. At 25°C, however, the ureA2425 strain showed phenotypes almost identical to that of
the wt, both on urea and 2-thiourea (figure 2).

In accordance with growth tests, 14C-urea transport assays for ureA2425 strains showed that the
uptake rate of urea is approximately 50% lower than that of the wt strain at 37°C, while it reached

http://www.cbs.dtu.dk/services/TMHMM/
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relative synonymous codon usage (RSCU)

Figure 1. Partial alignment of UreA-coding sequences in eight Aspergillus species. Protein sequences were aligned and subsequently
back-translated to the known nucleotide sequence. Relative synonymous codon usage in highly expressed genes (RSCU(HEGs)) is
plotted for A. nidulans (continuous line), as well as the average of RSCU(HEGs) for the eight Aspergillus species (dotted line),
with standard deviations. Note that negative values below 1 characterize synonymous triplets that are avoided in highly
expressed genes and vice versa. Mutated codons 24 and 25 in A. nidulans are shadowed in grey. Prediction of the first
transmembrane helix is shown as a black box below the alignment. Aligned sequences include A. nidulans AN0418,
A. fumigatus AFUB_005210, A. flavus AFL2T_02167, N. fischeri NFIA_019890, A. terreus ATET_02629, A. clavatus ACLA_029800,
A. oryzae AO_090003000854 and A. niger An01g03790 (http://www.aspergillusgenome.org).
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more than 80% of the uptake rate of that of the wt at 25°C (figure 3a). By contrast, the measured substrate

binding affinity of UreA2425 was similar to that of the wt (figure 3b).
Next, codon 25 was replaced with synonymous codons GGC and GGA (see above), in a ureA24

context (optimal codon CAG in position 24), to obtain mutants ureA2425C and ureA2425A,
respectively. According to the analysis of codon usage in A. nidulans [11], GGU would be the only
optimal codon encoding Gly, so we would not expect any effects of changing GGG into GGA or
GGC. Actually, no obvious differences could be detected in growth phenotypes (figure 2) or 14C-urea
transport assays between the wt and the ureA2425A or 2425C mutants (figure 3a).

We conclude that simultaneously changing non-optimal codons 24 and 25 into their predicted
optimal synonyms causes impairment in the functional ability of UreA to transport urea.

2.3. the ureA2425 mutation leads to a drastic decrease in UreA protein expression and
localization to the plasma membrane

To follow the fate of GFP-tagged UreA2425 in the cell, we performed epifluorescence microscopy on
mutant strain germlings (germinated fungal spores). In wt strains, grown at both 37°C and at 25°C on
proline as a sole nitrogen source (derepressing conditions), UreA-GFP localized to the plasma
membrane of germlings, to septae and, as a result of normal turnover, to intracellular globular
compartments (vesicles and vacuoles) [36]. Accumulation of free GFP in the lumen of vacuoles, owing
to its low-rate turnover in this compartment, can serve as an indicator of UreA-GFP degradation [40].
ureA2425 strains grown at 37°C showed only a very faint florescence both in the cell membrane and
in the globular intracellular compartments. If there was an augmented degradation of UreA2425-GFP,
we would expect to observe GFP localized mainly in vacuoles. However, this was not the case.
Detection of free GFP in western blots is also a standard, indirect measurement for vacuolar
degradation of GFP-tagged membrane proteins [41,42]. Therefore, an increase in the free GFP signal
should be observed if UreA2425-GFP was more prone to degradation. Notwithstanding, as shown in
figure 4b, at 37°C, only faint signals were obtained in western blots for both UreA2425-GFP and free
GFP. When ureA2425::gfp strains were grown at 25°C, UreA2425-GFP clearly localized in the cell
membrane and in vacuoles, as in the wt (figure 4a). In agreement with these results, bands for both
the fusion protein and free-GFP are clearly observed in western blots, even if UreA2425-GFP levels do
not reach those of the wt (figure 4b).

As we cannot rule out the possibility that the mutant fusion protein is prone to proteasomal
degradation, we carried out western blots on extracts of wt and ureA2425 strains in the presence
or absence of the proteasome inhibitors bortezomib and MG132, previously reported in A. nidulans
[43,44]. No differences could be detected in UreA2425-GFP levels between the treated and the
untreated samples (electronic supplementary material, figure S4a).

Our results suggest, then, that the low level of UreA2425-GFP in the membrane and the defective
growth and transport of urea observed at 37°C could not be attributed to an augmented degradation
of the mutant protein. Alternatively, the decrease in the amount of UreA2425-GFP levels could be
explained as a defect in the synthesis of the protein. Membrane protein levels and hence transport are
at least partially restored when the strain is grown at 25°C.

2.4. Changes in mRNA levels or structure at 37°C and 25°C do not explain the observed mutant
phenotype

The impaired UreA2425 protein levels observed in western blot analyses raise the possibility that
ureA2425 mRNA levels are diminished in strains grown at 37°C. To evaluate this possibility,
quantitative polymerase chain reaction (qPCR) was performed at both 37°C and 25°C, comparing ureA
mRNA levels in mutant and wt strains grown on proline as a nitrogen source (figure 4c). Our results
show that ureA mRNA levels are similarly diminished on the ureA2425 strain with respect to the wt
strain, at both 37°C and 25°C (66 ± 13.9% and 69 ± 5.6%, respectively). Notwithstanding, these mild
differences would not explain the strong disparities observed at the level of protein synthesis at
both temperatures.

As any change in sequence, a synonymous mutation could be at the basis of a change in RNA
structure and/or structure stability. Stable secondary structures around translation initiation sequences
and/or start codons in ureA2425 mRNA could influence the onset of translation. Thus, we performed
a bioinformatic prediction on partial ureA and ureA2425 mRNAs with mfold web server [45], on a
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sequence including 100 nucleotides upstream of the ATG start codon and 250 nucleotides downstream.
No significant differences were detected in the predicted structures at 37°C and 25°C or in the minimum
free energies (ΔGs) at both temperatures (electronic supplementary material, figure S2).
3. Discussion
In this study, we provide in vivo evidence of an important role of a pair of conserved, non-optimal codons
in the biosynthesis and therefore activity of UreA. Simultaneous mutation of codons 24 and 25 into the
corresponding optimal ones leads to a drastic diminution of UreA protein levels at the optimal growth
temperature of 37°C. Such an effect could be owing to a decrease in mRNA levels or in protein synthesis,
an increase in protein degradation or a combination of these possibilities.

Synonymous codon usage has been shown to participate in the regulation of mRNA stability [46–48].
On the other hand, as any mRNA sequence change, codon substitutions can affect the establishment of
secondary, stable structural elements that may have an effect in the control of translation initiation and
elongation [49–53]. Moreover, codon usage has been recently found to influence transcription levels in
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Neurospora crassa by affecting chromatin structure [54]. We show here that in the ureA2425 strain, mRNA

levels suffer a decrease of approximately 30%, at both 37°C and at 25°C. Thus, our results suggest that
codon usage could have some influence at the level of ureA transcription and/or mRNA stability.
Notwithstanding, these differences at mRNA levels would not explain the striking decrease observed
at 37°C in the levels of UreA in the ureA2425 mutant.

Codon usage has been implicated in the control of protein folding and activity [16–18,21]. As
mentioned above, in the case of membrane proteins, MDR1 constitutes an excellent example, where a
mutant version bearing a single synonymous change presents altered protein conformation and
functionality [34]. Notwithstanding, this does not seem to be the case for mutant UreA2425. First,
our results on radiolabelled urea uptake measurements show a decrease in uptake rate, which is
not accompanied by changes in the binding affinity, suggesting that the synonymous mutations
would not severely affect the structure of at least functionally important parts of the protein. Second,
the structure prediction for the first 25 amino acids of UreA suggests that this portion of the protein
would be mainly unstructured (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/
npsa_seccons.html). Third, misfolding of membrane proteins can lead to their retention in the ER,
which in A. nidulans appears as a characteristic accumulation of fluorescence in perinuclear rings, as
observed in the case of misfolded or partially misfolded UapA or UreA mutants [37,55,56]. In the case
of UreA2425, no such localization could be detected. Retention of misfolded proteins in the ER can
activate the UPR response and the expression of associated genes, like the BipA chaperone [55,57].
However, we could not detect significant differences in bipA mRNA levels between wt and ureA2425
strains, determined by qPCR (electronic supplementary material, figure S4b). Finally, no indication of
increased proteolysis of the mutant UreA2425 protein triggered by misfolding could be observed. We
were unable to detect GFP accumulation in vacuoles nor an augmentation of free GFP in western
blots. In addition, proteasome inhibition assays do not suggest that UreA2425-GFP is a substrate of
this degradation complex.

Given all the above, we propose that the synonymous change of codons 24 and 25 must have a major
impact at some stage of the protein synthesis process at 37°C. Considering the predicted localization of
codons 24 and 25, at the boundary between the N-terminal portion of the protein and the predicted first
TMS of UreA, it is reasonable to think that these non-optimal codons may be essential for a very early
stage in the particular biogenesis pathway of membrane proteins. Our predictions of mRNA structure
do not suggest an alteration at the level of secondary structure, which could lead to an early block in
translation. An appealing alternative hypothesis is that the loss of the pair of non-optimal codons
could affect a translational pause important for a key step in the biosynthesis of UreA. It is worth
noticing that even if a direct relationship between codon usage and translation elongation speed has
not been described for A. nidulans, such a relationship was demonstrated in N. crassa [25].

mRNA-encoded pauses have been suggested to have a role in assisting in the recognition of
membrane proteins by cofactors necessary for their correct folding and insertion. During the
translation of photosynthetic reaction centre protein Dl, a number of ribosome pauses occur, which
may facilitate the co-translational binding of chlorophyll and aid the insertion of Dl into thylakoid
membranes [58,59]. Recognition by SRP, a key player in membrane protein biogenesis, may also be
regulated by pauses encoded in mRNA. In E. coli, the analysis of genome-wide data on translation
rates revealed a tendency to pause in Shine-Dalgarno-like elements placed between codons 16 and 36,
when the nascent polypeptide has not yet emerged out of the ribosomal exit tunnel. The authors
suggest that at this early point, a slowdown in translation elongation would be important for early
recognition by SRP and that it may compensate for the lack of Alu domain in prokaryotic SRP [60]. In
yeast, the REST elements identified by Pechmann et al. [35] may assist in SRP recognition of the
nascent polypeptide, by establishing a translational pause 35–40 codons downstream of the SRP-
binding site. We wonder, then, if the pair of non-optimal codons 24 and 25 could establish a
translational pause, an mRNA-encoded signal that may somehow contribute to the stabilization in the
recognition of ureA-translating ribosome-nascent chain complexes (RNCs) by SRP or other factors
required for early stages in the biosynthesis process of membrane proteins. It is important to note that
such a putative translational pause would occur before the emergence of the polypeptide from the
ribosomal tunnel [61]. In both prokaryotes and eukaryotes, it has been shown that SRP can stably
bind to translating ribosomes harbouring short-chain peptides inside the exit tunnel, but it is not
until the emergence of a signal sequence that further stabilization of the RNC-SRP interaction occurs
[62–64]. Thus, what we observe in the case of ureA would be a novel mechanism, not described before
in eukaryotes. As observed in E. coli, the putative arrest in translation would take place while the
nascent polypeptide has not yet emerged from the ribosomal tunnel, but in the case of ureA, the
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pause would be determined by a pair of non-optimal codons. This is quite different from Pechmann’s

results in S. cerevisiae [35], where the observed translational pause occurs 35–40 codons downstream of
the SRP binding site, which would have then emerged from the ribosome.

It remains to be determined whether the presence of non-optimal codons in regions encoding the
N-terminus of other A. nidulans membrane proteins would be necessary for their correct synthesis. In
this sense, we performed a bioinformatic search of conserved, non-optimal codons in other A. nidulans
membrane proteins, taking into account their position relative to the protein structure. We could only
identify two other transporters where putative pauses would be found in a similar position as that
in ureA. hxtB, encoding a low affinity glucose transporter [65], presents a non-optimal triplet encoding
Asp at position 11. The first TMS is predicted to start at amino acidic residue number 11. nrtA, a high-
affinity nitrate transporter [66], bears a conserved non-optimal codon in position 32, encoding a Tyr,
with the first TMS starting at residue number 34, after secondary structure predictions.

We have shown that a single non-optimal codon of the 24/25 pair would be enough to grant a normal
biosynthesis of UreA. We wonder, then, why both codons are conserved in the eight Aspergilli
considered in this work. It has been found that codon pair usage is not random and has been shaped
by translational selection, so that certain codon pairs are favoured or avoided in the three domains of
life [67–71]. A possible explanation could be that the CAAGGG or the pairs formed by those codons
with their neighbours would be among the favoured pairs, while those resulting from alternative
triplets would be among the ones avoided. In fact, codon pairs containing the pattern nnGGnn are
avoided [69]. Hence, because Gly25 could be encoded by GGA/C/G/T triplets, CAGGln in position
24 would be unfavoured, while CAAGln would be selected in this position.

Finally, the fact that at 25°C the ureA2425 mutant displays an almost wt phenotype suggests that the
role of non-optimal codons 24 and 25 would be dependent on cellular conditions. We can speculate that
at the suboptimal growth temperature of 25°C, the translation would take place at a general lower rate,
and thus, the putative pause in translation imposed by codons 24 and 25 would be less crucial than at
37°C. In this optimal growth temperature, general protein biogenesis rates would be higher, and the cell
should need to adapt synthesis kinetics, in order not to saturate the translation and targeting
machineries. Elongation pauses could then contribute to such a control mechanism.

To sum up, in this work, we report on in vivo evidence for the role of codon bias in membrane protein
biogenesis. The pair of non-optimal codons 24 and 25 would regulate translation rate in a previously
undescribed fashion, possibly contributing to the correct interaction of RNCs translating ureA with
SRP and/or other factors necessary for these early events, while the polypeptide has not yet emerged
from the ribosomal tunnel. Our results suggest that the presence of these non-optimal codons would
not be functionally important in all cellular conditions. Whether this mechanism would affect other
proteins is still to be determined.
4. Material and methods
4.1. Sequence analyses
Sequences were obtained from the Aspergillus Genome Database (http://www.aspgd.org/) [72]. Protein
sequences were aligned using CLUSTAL OMEGA v.1.2.4 [73] and back translated to the known nucleotide
coding sequence using the tranalign tool from the Emboss package [74]. The prediction of
transmembrane regions was done using the TMHMM v.2.0 program [75]. Codon usage, including the
estimation of the RSCU of coding sequences in the A. nidulans genome, was calculated using CODONW
1.4.4, written by John Peden and available at codonw.sourceforge.net. The RSCU of HEGs were
taken as a proxy for the estimation of the bias towards the usage of translational optimal triplets.
Thus, values above 1 in RSCU characterize triplets mainly associated with high speed and accuracy of
translation [76], while values below 1 correspond to synonymous codons that show the opposite
features and tend to be avoided in HEGs. mRNA secondary structure prediction was done using the
mfold web server (http://unafold.rna.albany.edu/?q=mfold/RNA-Folding-Form [45]).

4.2. Strains, media and transformation procedures
Standard complete and minimal media (MM) for A. nidulans were employed ([77,78]; http://www.fgsc.
net). Supplements were added when necessary at standard concentrations (http://www.fgsc.net/
Aspergillus/gene_list/supplement.html). Aspergillus nidulans strains used in this study are listed in
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the electronic supplementary material, table S2. Gene symbols are defined in http://www.fgsc.net/

Aspergillus/gene_list/loci.html. Urea (0.6–5 mM), NaNO3 (10 mM), ammonium L(+)-tartrate (5 mM)
and proline (5 mM) were used as sole nitrogen sources. 2-Thiourea was used in concentrations of
0.6–5 mM. Aspergillus nidulans transformation was carried out as in the study by Szewczyk et al. [79].

For experiments with proteasome inhibitors [43,44,56,80,81], extracts were prepared from 200 ml
cultures of liquid MM with proline as a sole nitrogen source, inoculated with approximately
107 spores ml−1 and incubated at 37°C with shaking in the following conditions: (i) bortezomib was
added from the beginning to an overnight culture, to a final concentration of 5 µM; (ii) cultures were
grown overnight at 37°C, and after the addition of bortezomib to a final concentration of 5 µM,
incubated for three extra hours; and (iii) cultures were grown for 20 h, before adding sodium dodecyl
sulfate (SDS) to a final concentration of 0.003% and incubation for three additional hours. An MG132
solution in dimethyl sulfoxide (DMSO) was then added at a concentration of 120 µM, and incubation
was proceeded for two additional hours. A culture added with the same volume of DMSO was used
as a control.

4.3. Generation of ureA mutants
Site-directed mutagenesis on the ureA::gfp gene was performed by the fusion PCR technique [79] using
KAPA HiFi DNA polymerase (KAPA Biosystems) with primers Ure5-F, Ure3-R and complementary ones
carrying the desired substitution (see the electronic supplementary material, table S3). DNA extracted
from a ureA::gfp::AFpyrG strain (MVD 10A) was used as a template. A resulting 7 kb fusion product
was amplified with nested primers Ure5-N and Ure3-N and purified with the GeneJET Gel Extraction
Kit (Thermo Scientific). The resulting construct was transformed in a ureAΔ::riboB pyrG89 pyroA4
riboB2 nkuAΔ::argB veA1 strains (MVD 13A and isogenic yA2 MVD 14A). Protoplasts were plated on
selective (lacking uridine and uracil) 1 M sucrose MM and incubated at 37°C. Transformants were
purified on selective MM, and its ability to grow in different concentrations of urea and 2-thiorea was
tested. Transformants showing a riboB2 phenotype were preferentially selected for further analysis as
this was indicative of integration of the construct at the ureA locus. Assessment of single copy or
multicopy transformants was performed by a DIG DNA labelling and detection kit (Roche Applied
Science). Sequencing of the resulting mutants was performed in Macrogen Inc. (Seoul, Korea)

4.4. ureA expression analysis
Total RNA was isolated from A. nidulans, as described by Lockington et al. [82] from germlings grown
on liquid cultures (using 5 mM proline as a nitrogen source) inoculated with 1 × 107 spores ml−1 or
3 × 107 spores ml−1 and incubated at 37 and 25°C, respectively. For cDNA synthesis, 1 µg total RNA
was treated with Turbo DNase (Thermo Fisher Scientific) and retro-transcribed using SuperScript II
Reverse Transcriptase (Invitrogen) in the presence of random primers (Invitrogen). Quantitative
reverse transcription PCR was employed to determine the relative expression levels of ureA using
actA (γ-actin) as an endogenous control for the calibration of gene expression. Specific primers
(ureA_qPCR3_F/R and actA_F/R, electronic supplementary material, table S3) were used to amplify
the corresponding cDNA fragments. PCR reactions were performed using the SensiFast SYBR Hi-ROX
Kit (Bioline) in a StepOne Real-Time PCR System (Thermo Fisher Scientific). Three biological and two
technical replicates for each sample were performed. Relative gene expression data were analysed
using the 2ΔΔCt method [83].

4.5. Protein extraction and western blot
MM liquid cultures with proline (5 mM) as a nitrogen source were incubated overnight at 37°C or 25°C.
Micelia was then harvested and ground in liquid nitrogen. Ground mycelium (200 mg) was suspended in
precipitation buffer (50 mM Tris–HCl pH 8.0, 50 mMNaCl and 12.5% TCA) and centrifuged for 10 min at
16 000g. Pellets were recovered and suspended in extraction buffer (100 Mm Tris–HCl pH 8.0, 50 mM
NaCl. 1% SDS, 1 mM EDTA and 1:250 dilution of Sigma’s fungal protease inhibitor) and centrifuged
for 15 min at 16 000 g. The supernatant was recovered, and protein concentration was determined by
the Bradford assay. Total proteins (30 µg) were separated by SDS-polyacrylamide gel electrophoresis
(10% (w/v) polyacrilamide gel) and electroblotted (Mini Trans-Blot Electrophoretic Transfer Cell, Bio-
Rad) onto a nitrocellulose membrane (0.45 µM, Thermo Scientific). Transferred proteins on the membrane
were incubated in stripping buffer (10 mM Tris–HCl pH 6.8, 2% SDS and 100 β-mercaptoethanol) for
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15 min at 55°C (as described by Kaur & Bachhawat [84]). The membrane was then treated with 5% non-fat

dry milk, and immunodetection was done with a primary mouse anti-GFP monoclonal antibody (Roche
Applied Science) or an anti-actin monoclonal antibody (C4, MP Biomedicals) and a secondary sheep anti-
mouse IgG HRP-linked antibody (GE Healthcare). Blots were developed using the Novex ECL HRP
Chemiluminescent Substrate Reagent kit (Invitrogen) and the GENESYS software from the GBox Chemi
XT4 System (Syngene) or SuperRX Fuji medical X-ray films (FujiFILM).

4.6. Epifluorescence microscopy
Samples for fluorescence microscopy were prepared as described previously [85]. In brief, samples were
incubated directly on sterile coverslips protected from light in liquid MM with proline (5 mM) as a
nitrogen source and appropriate supplements at 25°C for 14–16 h or 37°C for 7–8 h. Samples were
observed and photographed in an Olympus inverted microscope CKX31 belonging to the Cellular
Biology Platform, Institut Pasteur de Montevideo, with a U-MNIBA3 filter. The microscope is equipped
with a Hamamatsu Orca Er camera and uses MICRO-MANAGER software (https://micro-manager.org/,
[86]) for image processing. The resulting images were processed by Adobe PHOTOSHOP software.

4.7. Radiolabelled urea uptake measurements
[14C]-urea uptake was performed, as previously described, in germinating conidiospores of A. nidulans
grown for 3–4 h in liquid MM (37°C, 130 r.p.m., pH 6.8), supplemented with 1% (w/v) glucose and
10 mM proline as carbon and nitrogen sources, respectively, concentrated at approximately 107

conidiospores/assay [36,87]. In time course experiments, uptake was measured in the presence of
50 µM [14C]-urea. Reactions were terminated by the addition of excess non-labelled substrate (1000-
fold). Kinetic values (Km/i) were obtained by performing and analysing uptakes (PRISM 3.02: Graph
PadSoftware, Inc.), as described in detail by Abreu et al. [36] and Sanguinetti et al. [37]. Assays were
carried out in at least three independent experiments, with three replicates for each time point.
Background uptake was corrected by subtracting values measured in the deleted mutant (ureAΔ).
Data were analysed and plotted using the PRISM software (PRISM 3.02: Graph Pad Software). The
standard deviation was less than 20%. [14C]-urea (55.0 mCi mmol−1) was purchased from Moravek
Biochemicals (Brea, CA, USA).

Data accessibility. Data is available from the Dryad Digital Repository at https://doi.org/10.5061/dryad.56kv356 [88].
Data is also available from electronic supplementary material, figures and tables. Aspergillus nidulans strains used
in this study are available upon request.
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