123 research outputs found

    Medicinal and economic uses of some introduced plant species and their conservation in the Botanic Garden of Indian Republic, Noida

    Get PDF
    Plants are an important part of human communities and their conservation should be done on priority basis. These plant species have been used for medicinal and economic purposes by the tribal human communities for many centuries. In the 21st century, many such plant species are under threat due to loss of habitats, over-exploitation, alien/invasive species and several other anthropogenic reasons. Thus, these plant species need to be conserved for the future generations before their permanent extinction from the planet earth. The Botanic Gardens have a very important role in their conservation. In the present study, an attempt has been made to conserve such medicinally and economically important plants at the Botanic Garden of Indian Republic (BGIR), Noida. Many plant species from all over India have been introduced in this garden for conservation since 2002. Out of them, a total of 51 species were selected and their medicinal and economic uses were studied and evaluated during the study along with other details like Hindi names, areas of distribution in India, and flowering and fruiting period at the BGIR. More details like the type of diseases treated from these plant species and particular plant parts used for the treatment have also been discussed. This paper will provide a comprehensive study of the uses of plant species conserved in the Botanic Garden from different phytogeographical regions of India

    Medicinal and economic uses of some introduced plant species and their conservation in the Botanic Garden of Indian Republic, Noida

    Get PDF
    795-803Plants are an important part of human communities and their conservation should be done on priority basis. These plant species have been used for medicinal and economic purposes by the tribal human communities for many centuries. In the 21st century, many such plant species are under threat due to loss of habitats, over-exploitation, alien/invasive species and several other anthropogenic reasons. Thus, these plant species need to be conserved for the future generations before their permanent extinction from the planet earth. The Botanic Gardens have a very important role in their conservation. In the present study, an attempt has been made to conserve such medicinally and economically important plants at the Botanic Garden of Indian Republic (BGIR), Noida. Many plant species from all over India have been introduced in this garden for conservation since 2002. Out of them, a total of 51 species were selected and their medicinal and economic uses were studied and evaluated during the study along with other details like Hindi names, areas of distribution in India, and flowering and fruiting period at the BGIR. More details like the type of diseases treated from these plant species and particular plant parts used for the treatment have also been discussed. This paper will provide a comprehensive study of the uses of plant species conserved in the Botanic Garden from different phytogeographical regions of India

    Corrosion Mitigation by Planar Benzimidazole Derivatives

    Get PDF
    The corrosion has a considerable amount of impact on the economics of every nation, and ultimately it affects the GDP. In the present era, the challenge given by corrosion can be easily mitigated using organic compounds as corrosion inhibitor in different corrosive media. The important property of an inhibitor is the presence of the metal interacting with heteroatoms and a planar structure. In this regard, benzimidazoles (BI) with a fused bicyclic ring consisting of benzene and imidazole moiety in their structural framework making them a potential candidate for anti-corrosion work. In addition to this, bezimidazole derivatives are classified as green inhibitor due to different kinds of biological activities. Their higher potency to mitigate corrosion is because of the planar molecular structure, nitrogen atom and sp2 hybridized carbon, which provide them an ability to strongly interact with the metal. The focus of this book chapter is to investigate briefly the anti-corrosion ability of benzimidazole (BI) and their derivatives as a potential corrosion inhibitor for various industrially useful metals in different aggressive media

    Methionine-functionalized graphene oxide/sodium alginate bio-polymer nanocomposite hydrogel beads: Synthesis, isotherm and kinetic studies for an adsorptive removal of fluoroquinolone antibiotics

    Get PDF
    This work was supported by Pt. Ravishankar Research Fellowship Scheme, Raipur, Chhattisgarh, India (grant number V.R. No. 3114/4/Fin./Sch.//2018). This work was also supported by national funds through FCT-Fundacao para a Ciencia e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call (CEECINST/00102/2018) and by the Associate Laboratory for Green Chemistry-LAQV, financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).In spite of the growing demand for new antibiotics, in the recent years, the occurrence of fluoroquinolone antibiotics (as a curative agent for urinary tract disorders and respiratory problems) in wastewater have drawn immense attention. Traces of antibiotic left-overs are present in the water system, causing noxious impact on human health and ecological environments, being a global concern. Our present work aims at tackling the major challenge of toxicity caused by antibiotics. This study deals with the efficient adsorption of two commonly used fluoroquinolone (FQ) antibiotics, i.e., Ofloxacin (OFX) and Moxifloxacin (MOX) on spherical hydrogel beads generated from methionine‒functionalized graphene oxide/ sodium alginate polymer (abbreviated Met-GO/SA) from aqueous solutions. The composition, morphology and crystal phase of prepared adsorbents were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM) and thermogravimetric analysis/differential thermogravimetry (TGA/DTG). Batch adsorption tests are followed to optimize the conditions required for adsorption process. Both functionalized and non-functionalized adsorbents were compared to understand the influence of several experimental parameters, such as, the solution pH, contact time, adsorbent dosage, temperature and initial concentration of OFX and MOX on adsorption. The obtained results indicated that the functionalized adsorbent (Met-GO/SA) showed a better adsorption efficiency when compared to non-functionalized (GO/SA) adsorbent. Further, the Langmuir isotherm was validated as the best fitting model to describe adsorption equilibrium and pseudo second-order-kinetic model fitted well for both types of adsorbate. The maximum adsorption capacities of Met-GO/SA were 4.11 mg/g for MOX and 3.43 mg/g for OFX. Thermodynamic parameters, i.e., ∆G°, ∆H° and ∆S° were also calculated. It was shown that the overall adsorption process was thermodynamically favorable, spontaneous and exothermic in nature. The adsorbents were successfully regenerated up to four cycles with 0.005 M NaCl solutions. Overall, our work showed that the novel Met-GO/SA nanocomposite could better contribute to the removal of MOX and OFX from the liquid media. The gel beads prepared have adequate features, such as simple handling, eco-friendliness and easy recovery. Hence, polymer gel beads are promising candidates as adsorbents for large-scale water remediation.publishersversionpublishe

    The role of covalent dimerization on the physical and chemical stability of the EC1 domain of human E-cadherin

    Get PDF
    The objective of this work was to evaluate the solution stability of the EC1 domain of E-cadherin under various conditions. The EC1 domain was incubated at various temperatures (4, 37, and 70 °C) and pH values (3.0, 7.0, and 9.0). At pH 9.0 and 37 or 70 °C, a significant loss of EC1 was observed due to precipitation and a hydrolysis reaction. The degradation was suppressed upon addition of DTT, suggesting that the formation of EC1 dimer facilitated the EC1 degradation. At 4 °C and various pH values, the EC1 secondary and tertiary showed changes upon incubation up to 28 days, and DTT prevented any structural changes upon 28 days of incubation. Molecular dynamics simulations indicated that the dimer of EC1 has higher mobility than does the monomer; this higher mobility of the EC1 dimer may contribute to instability of the EC1 domain

    Conformational Changes and Translocation of Tissue-Transglutaminase to the Plasma Membranes: Role in Cancer Cell Migration

    Get PDF
    Background Tissue-transglutaminase (TG2), a dual function G-protein, plays key roles in cell differentiation and migration. In our previous studies we reported the mechanism of TG2-induced cell differentiation. In present study, we explored the mechanism of how TG2 may be involved in cell migration. Methods To study the mechanism of TG2-mediated cell migration, we used neuroblastoma cells (SH-SY5Y) which do not express TG2, neuroblastoma cells expressing exogenous TG2 (SHYTG2), and pancreatic cancer cells which express high levels of endogenous TG2. Resveratrol, a natural compound previously shown to inhibit neuroblastoma and pancreatic cancer in the animal models, was utilized to investigate the role of TG2 in cancer cell migration. Immunofluorescence assays were employed to detect expression and intracellular localization of TG2, and calcium levels in the migrating cells. Native gel electrophoresis was performed to analyze resveratrol-induced cellular distribution and conformational states of TG2 in migrating cells. Data are presented as the mean and standard deviation of at least 3 independent experiments. Comparisons were made among groups using one-way ANOVA followed by Tukey-Kramer ad hoc test. Results TG2 containing cells (SHYTG2 and pancreatic cancer cells) exhibit increased cell migration and invasion in collagen-coated and matrigel-coated transwell plate assays, respectively. Resveratrol (1 μM-10 μM) prevented migration of TG2-expressing cells. During the course of migration, resveratrol increased the immunoreactivity of TG2 without affecting the total TG2 protein level in migrating cells. In these cells, resveratrol increased calcium levels, and depletion of intracellular calcium by a calcium chelator, BAPTA, attenuated resveratrol-enhanced TG2 immunoreactivity. In native-polyacrylamide gels, we detected an additional TG2 protein band with slower migration in total cell lysates of resveratrol treated cells. This TG2 form is non-phosphorylated, exclusively present in plasma membrane fractions and sensitive to intracellular Ca2+ concentration suggesting a calcium requirement in TG2-regulated cell migration. Conclusions Taken together, we conclude that resveratrol induces conformational changes in TG2, and that Ca2+-mediated TG2 association with the plasma membrane is responsible for the inhibitory effects of resveratrol on cell migration

    Phenomenology of buoyancy-driven turbulence: Recent results

    Get PDF
    In this paper, we review the recent developments in the field of buoyancy-driven turbulence. Scaling and numerical arguments show that the stably-stratified turbulence with moderate stratification has kinetic energy spectrum Eu(k)k11/5E_u(k) \sim k^{-11/5} and the kinetic energy flux Πu(k)k4/5\Pi_u(k) \sim k^{-4/5}, which is called Bolgiano-Obukhov scaling. The energy flux for the Rayleigh-B\'{e}nard convection (RBC) however is approximately constant in the inertial range that results in Kolmorogorv's spectrum (Eu(k)k5/3E_u(k) \sim k^{-5/3}) for the kinetic energy. The phenomenology of RBC should apply to other flows where the buoyancy feeds the kinetic energy, e.g. bubbly turbulence and fully-developed Rayleigh Taylor instability. This paper also covers several models that predict the Reynolds and Nusselt numbers of RBC. Recent works show that the viscous dissipation rate of RBC scales as Ra1.3\sim \mathrm{Ra}^{1.3}, where Ra\mathrm{Ra} is the Rayleigh number

    Pilot case-control investigation of risk factors for hip fractures in the urban Indian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the reported high prevalence of osteoporosis in India, there have been no previous studies examining the risk factors for hip fracture in the Indian population.</p> <p>Methods</p> <p>We carried out a case control investigation comprising 100 case subjects (57 women and 43 men) admitted with a first hip fracture into one of three hospitals across New Delhi. The 100 controls were age and sex matched subjects who were either healthy visitors not related to the case patients or hospital staff. Information from all subjects was obtained through a questionnaire based interview.</p> <p>Results</p> <p>There was a significant increase in the number of cases of hip fracture with increasing age. There were significantly more women (57%) than men (43%). Univariate analysis identified protective effects for increased activity, exercise, calcium and vitamin supplements, almonds, fish, paneer (cottage cheese), curd (plain yogurt), and milk. However, tea and other caffeinated beverages were significant risk factors. In women, hormone/estrogen therapy appeared to have a marginal protective effect. For all cases, decreased agility, visual impairment, long term medications, chronic illnesses increased the risk of hip fracture. The multivariate analysis confirmed a protective effect of increased activity and also showed a decrease in hip fracture risk with increasing body mass index (odds ratio (OR) 0.024, 95% confidence interval (CI) 0.006-0.10 & OR 0.81, 95% CI 0.68-0.97 respectively). Individuals who take calcium supplements have a decreased risk of hip fracture (OR 0.076; CI 0.017-0.340), as do individuals who eat fish (OR 0.094; CI 0.020-0.431), and those who eat paneer (OR 0.152; 0.031-0.741). Tea drinkers have a higher risk of hip fracture (OR 22.8; 95% CI 3.73-139.43). Difficulty in getting up from a chair also appears to be an important risk factor for hip fractures (OR 14.53; 95% CI 3.86-54.23).</p> <p>Conclusions</p> <p>In the urban Indian population, dietary calcium, vitamin D, increased body mass index, and higher activity levels have a significant protective effect on hip fracture. On the other hand, caffeine intake and decreased agility increase the risk of hip fracture. Future studies should be done in order to direct primary preventive programs for hip fracture in India.</p

    Effect of vitamin D supplementation on bone health parameters of healthy young Indian women

    Get PDF
    Summary There is a huge prevalence of hypovitaminosis D in the Indian population. We studied the efficacy and safety of oral vitamin D supplementation in apparently healthy adult women. Monthly cholecalciferol given orally, 60,000 IU/month during summers and 120,000 IU/month during winters, safely increases 25-hydroxyvitamin D (25 (OH)D) levels to near normal levels. Introduction There is a huge burden of hypovitaminosis D in the Indian population. The current recommendation for vitamin D supplementation is not supported by sufficient evidence. Methods Study subjects included 100 healthy adult women of reproductive age group from hospital staff. They wer
    corecore