57 research outputs found

    Integral geometry of complex space forms

    Full text link
    We show how Alesker's theory of valuations on manifolds gives rise to an algebraic picture of the integral geometry of any Riemannian isotropic space. We then apply this method to give a thorough account of the integral geometry of the complex space forms, i.e. complex projective space, complex hyperbolic space and complex euclidean space. In particular, we compute the family of kinematic formulas for invariant valuations and invariant curvature measures in these spaces. In addition to new and more efficient framings of the tube formulas of Gray and the kinematic formulas of Shifrin, this approach yields a new formula expressing the volumes of the tubes about a totally real submanifold in terms of its intrinsic Riemannian structure. We also show by direct calculation that the Lipschitz-Killing valuations stabilize the subspace of invariant angular curvature measures, suggesting the possibility that a similar phenomenon holds for all Riemannian manifolds. We conclude with a number of open questions and conjectures.Comment: 68 pages; minor change

    Extended morphometric analysis of neuronal cells with Minkowski valuations

    Full text link
    Minkowski valuations provide a systematic framework for quantifying different aspects of morphology. In this paper we apply vector- and tensor-valued Minkowski valuations to neuronal cells from the cat's retina in order to describe their morphological structure in a comprehensive way. We introduce the framework of Minkowski valuations, discuss their implementation for neuronal cells and show how they can discriminate between cells of different types.Comment: 14 pages, 18 postscript figure

    Logarithmically-concave moment measures I

    Full text link
    We discuss a certain Riemannian metric, related to the toric Kahler-Einstein equation, that is associated in a linearly-invariant manner with a given log-concave measure in R^n. We use this metric in order to bound the second derivatives of the solution to the toric Kahler-Einstein equation, and in order to obtain spectral-gap estimates similar to those of Payne and Weinberger.Comment: 27 page

    Optimal measures and Markov transition kernels

    Get PDF
    We study optimal solutions to an abstract optimization problem for measures, which is a generalization of classical variational problems in information theory and statistical physics. In the classical problems, information and relative entropy are defined using the Kullback-Leibler divergence, and for this reason optimal measures belong to a one-parameter exponential family. Measures within such a family have the property of mutual absolute continuity. Here we show that this property characterizes other families of optimal positive measures if a functional representing information has a strictly convex dual. Mutual absolute continuity of optimal probability measures allows us to strictly separate deterministic and non-deterministic Markov transition kernels, which play an important role in theories of decisions, estimation, control, communication and computation. We show that deterministic transitions are strictly sub-optimal, unless information resource with a strictly convex dual is unconstrained. For illustration, we construct an example where, unlike non-deterministic, any deterministic kernel either has negatively infinite expected utility (unbounded expected error) or communicates infinite information.Comment: Replaced with a final and accepted draft; Journal of Global Optimization, Springer, Jan 1, 201

    Continuous valuations on convex sets

    No full text

    A Remark on the Szarek–Talagrand Theorem

    No full text
    • …
    corecore