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Abstract
Schuster introduced the notion of Blaschke-Minkowski homomorphism and
considered its Shephard problems. Wang gave the definition of Lp
Blaschke-Minkowski homomorphisms and considered its Shephard problems for
volume. In this paper, we obtain its Shephard type inequalities for the affine surface
area and two monotonicity inequalities for Lp Blaschke-Minkowski homomorphisms
are established.
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1 Introduction
LetKn denote the set of convex bodies (compact, convex subsets with nonempty interiors)
in Euclidean spaceRn. LetKn

o denote the set of convex bodies and containing the origin in
their interiors, and let Kn

e denote origin-symmetric convex bodies in R
n. Let Sn– denote

the unit sphere in R
n, and let V (K ) denote the n-dimensional volume of body K .

If K ∈ Kn, then its support function, hK = h(K , ·) : Rn → (–∞, +∞), is defined by
(see [, ])

h(K ,x) =max{x · y : y ∈ K}, x ∈ R
n,

where x · y denotes the standard inner product of x and y.
A function � defined on Kn and taking values in an Ablelian semigroup is called a val-

uation if

�(K ∪ L) +�(K ∩ L) =�K +�L,

whenever K , L, K ∪ L, K ∩ L ∈Kn.
The theory of real valued valuations is at the center of convex geometry. A systematic

study was initiated by Blaschke in the s, and then Hadwiger [] focused on classify-
ing valuations on compact convex sets in R

n and obtained the famous Hadwiger’s char-
acterization theorem. Schneider obtained first results on convex body valued valuations
with Minkowski addition in s. The survey [, ] and the book [] are an excellent
sources for the classical theory of valuations. Somemore recent results can see [, , –].
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Recently, Schuster in [] gave the definition of Blaschke-Minkowski homomorphism as
follows:
A map � : Kn → Kn is called Blaschke-Minkowski homomorphism if it satisfies the

following conditions:
(a) � is continuous.
(b) � is a Blaschke-Minkowski addition, i.e., for all K ,L ∈Kn

�(K#L) = �K +�L.

(c) � intertwines rotation, i.e., for all K ∈Kn and ϑ ∈ SO(n)

�(ϑK ) = ϑ�K .

HereK#L is the Blaschke sum of the convex bodiesK and L, i.e., S(K#L, ·) = S(K , ·)+S(L, ·).
SO(n) is the group of rotation in n dimensions.
The Lp Minkowski valuation was introduced by Ludwig (see []). A function � :Kn

o →
Kn

o is called an Lp Minkowski valuation if

�(K ∪ L) +p �(K ∩ L) = �K +p �L,

whenever K , L, K ∪ L ∈Kn
o , and here ‘+p’ is Lp Minkowski addition (see (.)).

Then, Wang in [] introduced the Lp Blaschke-Minkowski homomorphism and gave
Theorem .A.

Definition . Let p > , a map �p :Kn
e → Kn

e satisfying the following properties (a), (b)
and (c) is called an Lp Blaschke-Minkowski homomorphism.
(a) �p is continuous with respect to Hausdorff metric.
(b) �p(K#pL) = �pK +p �pL for all K ,L ∈Kn

e .
(c) �p is SO(n) equivariant, i.e., �p(ϑK ) = ϑ�pK for all ϑ ∈ SO(n) and all K ∈Kn

e .
Here K#pL denotes the Lp Blaschke sum of K ,L ∈Kn

e , i.e., Sp(K#pL, ·) = Sp(K , ·) +p Sp(L, ·).

Theorem .A Let p >  and p �= n. If �p : Kn
e → Kn

e is an Lp Blaschke-Minkowski homo-
morphism, then there is a nonnegative function g ∈ C(Sn–, ê), such that

hp(�pK , ·) = Sp(K , ·) ∗ g.

A map �p :Kn
e →Kn

e is even because of �p(K ) = �p(–K ) for K ∈Kn
e .

A map �p :Kn
e →Kn

e is an even Lp Blaschke-Minkowski homomorphism, if and only if
there is a convex body of revolution F ∈Kn

e , unique up to translation, such that

hp(�pK , ·) = Sp(K , ·) ∗ h(F , ·). (.)

In [], together with the Lp Blaschke-Minkowski homomorphisms, Wang studied the
Shephard problems of Lp Blaschke-Minkowski homomorphisms.
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Theorem .B Let �p : Kn
e → Kn

e is an Lp Blaschke-Minkowski homomorphism, K ∈ Kn
e ,

L ∈ �pKn
e and p is not an even integer. If  < p < n, then

�pK ⊆ �pL ⇒ V (K ) ≤ V (L).

If p > n, then

�pK ⊆ �pL ⇒ V (K ) ≥ V (L),

and V (K ) = V (L), if and only if K = L.

In this article, we continuously study the Lp Blaschke-Minkowski homomorphisms.
Firstly, comparing with Theorem .B, we give the Lp-affine surface area of Shephard type
inequalities for the Lp Blaschke-Minkowski homomorphisms.

Theorem . Let K ∈Fn
e , L ∈ ωn

p and n �= p > . If �pK ⊆ �pL, then

�p(K ) ≤ �p(L),

with equality if and only if K and L are dilates.

Here ωn
p = {N ∈ Fn

e : there exists Z ∈ Zn
p with fp(N , ·) = h(Z, ·)–(n+p)}, where fp(N , ·) is

the p-curvature function of N , Fn
e denotes the set of convex bodies in Kn

e with positive
continuous curvature function and Zn

p denotes the set of Lp Blaschke-Minkowski homo-
morphisms. Besides, �p(K ) denotes the Lp-affine surface area of K ∈Kn

o .
Actually, we will prove a more general result than Theorem . in Section .
Further, associated with the Lp Blaschke-Minkowski homomorphisms, we establish the

following monotonicity inequalities.

Theorem . Let K ,L ∈ Kn
e , n �= p > . If for every Q ∈ Kn

e , Vp(K ,Q)≤ Vp(L,Q), then

V (�pK ) ≤ V (�pL),

with equality if and only if K and L are dilates.

Theorem . Let K ,L ∈Kn
e , n �= p > . If for every Q ∈ Kn

e , Vp(K ,Q)≤ Vp(L,Q), then

V
(
�∗

pL
) ≤ V

(
�∗

pK
)
,

with equality if and only if K and L are dilates.

Here and the following we write �∗
pK for the polar of �pK .

2 Notations and backgroundmaterials
If K is a compact star-shaped (about the origin) in R

n, its radial function, ρK = ρ(K , ·) :
R

n\{} −→ [, +∞), is defined by (see [])

ρ(K ,x) =max{λ ≥  : λx ∈ K}, x ∈R
n\{}.
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If ρK is positive and continuous, K will be called a star body (about the origin). Two star
bodies K and L are said to be dilates (of one another) if ρK (u)/ρL(u) is independent of
u ∈ Sn–. Let Sn

o denote the set of star bodies (about the origin), and let Sn
e denote the set

of origin-symmetric star bodies.
If K ∈Kn, the polar body of K , K∗, is defined by (see [])

K∗ =
{
x ∈R

n : x · y≤ , y ∈ K
}
.

If K ∈Kn
o , then the support function and radial function of K∗, the polar body of K , are

given (see []), respectively, by

hK∗ =


ρK
, ρK∗ =


hK

. (.)

2.1 Lp-mixed volume
For K ,L ∈ Kn

o , p≥  and λ,μ ≥  (not both zero), the Firey Lp-combination, λ ·K +p μ ·L ∈
Kn

o , of K and L is defined by (see [])

h(λ ·K +p μ · L, ·)p = λh(K , ·)p +μh(L, ·)p, (.)

where ‘·’ in λ ·K denotes the Firey scalar multiplication.
Associated with Firey Lp-combination (.) of convex bodies, Lutwak (see []) intro-

duced the following. For K ,L ∈ Kn
o , ε >  and p ≥ , the Lp-mixed volume, Vp(K ,L), of K

and L is defined by

n
p
Vp(K ,L) = lim

ε−→+

V (K +p ε · L) –V (K )
ε

.

It was shown in [] that corresponding to each K ∈Kn
o , there exists a positive Borel mea-

sure on Sn–, Sp(K , ·) of K , such that for each L ∈Kn
o ,

Vp(K ,L) =

n

∫
Sn–

hpL(v)dSp(K , v). (.)

The measure Sp(K , ·) is just the Lp surface area measure of K , which is absolutely con-
tinuous with respect to classical surface area measure S(K , ·) and has a Radon-Nikodym
derivative

dSp(K , ·)
dS(K , ·) = h(K , ·)–p.

Obviously, from (.), it follows immediately that, for each K ∈Kn
o ,

Vp(K ,K ) = V (K ). (.)

The Minkowski inequality for the Lp-mixed volume is called Lp-Minkowski inequality.
The Lp-Minkowski inequality can be stated that (see []): If K ,L ∈Kn

o and p ≥ , then

Vp(K ,L)≥ V (K )
n–p
n V (L)

p
n , (.)
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with equality for p =  if and only if K and L are homothetic, for p >  if and only if K and
L are dilates.
A convex body K ∈Kn

o is said to have a Lp-curvature function (see []) fp(K , ·) : Sn– →
R, if its Lp surface area measure Sp(K , ·) is absolutely continuous with respect to spherical
Lebesgue measure S and

dSp(K , ·)
dS

= fp(K , ·). (.)

2.2 Lp-dual mixed volume
For K ,L ∈ Sno , p ≥  and λ,μ ≥  (not both zero), the Lp-harmonic radial combination,
λ 
K +–p μ 
 L ∈ Sn

o , of K and L is defined by (see [])

ρ(λ 
K +–p μ 
 L, ·)–p = λρ(K , ·)–p +μρ(L, ·)–p. (.)

Using the Lp-harmonic radial combination (.), Lutwak (see []) introduced the notion
of Lp-dual mixed volume. For K ,L ∈ Sno and p ≥ , the Lp-dual mixed volume, Ṽ–p(K ,L),
of K and L is defined by

n
–p

Ṽ–p(K ,L) = lim
ε→+

V (K +–p ε 
 L) –V (K )
ε

.

The definition above and the polar coordinate formula for volume give the following
integral representation of the Lp-dual mixed volume:

Ṽ–p(K ,L) =

n

∫
Sn–

ρ
n+p
K (υ)ρ–p

L (υ)dS(υ), (.)

where the integration is with respect to spherical Lebesgue measure S on Sn–.
From (.), it follows that for each K ∈ Sno and p≥ ,

Ṽ–p(K ,K ) = V (K ) =

n

∫
Sn–

ρn
K (υ)dS(υ). (.)

Lutwak in [] established the Lp-dual Minkowski inequality: If K ,L ∈ Sno , and p ≥ ,
then

Ṽ–p(K ,L) ≥ V (K )
n+p
n V (L)

–p
n , (.)

with equality if and only if K and L are dilates.

2.3 Lp-mixed affine surface area
Let Fn, Fn

o denote the set of convex bodies in Kn, Kn
o with positive continuous curvature

function.
Lutwak (see []) defined the ith mixed affine surface area as follows: For K ,L ∈Fn and

i ∈ R, the ith mixed affine surface area, �i(K ,L), of K and L is defined by

�i(K ,L) =
∫
Sn–

f (K ,u)
n–i
n+ f (L,u)

i
n+ dS(u).
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For K ,L ∈Fn
o , p ≥  and i ∈ R, the Lp-mixed affine surface area, �p,i(K ,L), of K and L is

defined by Wang and Leng (see [])

�p,i(K ,L) =
∫
Sn–

fp(K ,u)
n–i
n+p fp(L,u)

i
n+p dS(u). (.)

Obviously, from (.), we have

�p,i(K ,K ) = �p(K ). (.)

Specially, for the case i = –p, we write �p,–p(K ,L) = �–p(K ,L). Associated with (.),
then

�–p(K ,L) =
∫
Sn–

fp(K ,u)fp(L,u)
–p
n+p dS(u)

=
∫
Sn–

fp(L,u)
–p
n+p dSp(K ,u). (.)

The Minkowski inequality for the Lp-mixed affine surface area was given by Wang and
Leng (see []): If K ,L ∈Fn

o , p≥  and i ∈ R, then for i <  or i > n,

�p,i(K ,L)n ≥ �p(K )n–i�p(L)i, (.)

with equality for p =  if and only if K and L are homothetic, for n �= p >  if and only if K
and L are dilates; for  < i < n, (.) is reverse; for i =  or i = n, (.) is identical.
Combining with (.), they in [] obtain the following result. If K ,L ∈Fn

o and p≥ ,

�–p(K ,L) = �p,–p(K ,L) ≥ �p(K )
n+p
n �p(L)

–p
n , (.)

with equality for n �= p >  if and only if K and L are dilates, for p =  if and only if K and L
are homothetic.

2.4 Spherical convolution and spherical harmonics
In the following we state somematerial on convolution and spherical harmonics, and they
can be found in the references (see [, ]).
In order to state the material on spherical harmonics, we first introduce further basic

notions connected to SO(n) and Sn–. As usual, SO(n) and Sn– will be equipped with in-
variant probability measures. Let C(SO(n)), C(Sn–) be the spaces of continuous function
on SO(n) and Sn– with uniform topology and M(SO(n)), M(Sn–) their dual spaces of
signed finite Borel measures with weak topology. If μ,σ ∈ M(SO(n)), the convolution
μ ∗ σ is defined by

∫
SO(n)

f (ϑ)d(μ ∗ σ )(ϑ) =
∫
SO(n)

∫
SO(n)

f (ητ )dμ(η)dσ (τ ),

for every f ∈ C(SO(n)) and ϑ ∈ SO(n). The sphere Sn– is identical with the honogeneous
space SO(n)/SO(n–), where SO(n–) denotes the subgroup of rotations leaving the pole
ê of Sn– fixed.
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For μ ∈M(SO(n)), the convolutions μ ∗ f ∈ C(SO(n)) and f ∗ μ ∈ C(SO(n)) with a func-
tion f ∈ C(SO(n)) are defined by

(f ∗ μ)(η) =
∫
SO(n)

f
(
ηϑ–)dμ(ϑ),

(μ ∗ f )(η) =
∫
SO(n)

ϑ f (η)dμ(ϑ).
(.)

The canonical pairing of f ∈ C(Sn–) and μ ∈M(Sn–) is defined by

〈μ, f 〉 = 〈f ,μ〉 =
∫
Sn–

f (u)dμ(u). (.)

From (.) and (.), it follows that (see []) if μ,ν ∈M(Sn–) and f ∈ C(Sn–), then

〈μ ∗ ν, f 〉 = 〈μ, f ∗ ν〉. (.)

3 Proofs of theorems
In this section, firstly, we will prove the general form of Theorem ..

Theorem . Let K ∈ Fn
e , L ∈ ωn

p and n �= p > . For every Q ∈ Kn
e , if Vp(Q,�pK ) ≤

Vp(Q,�pL), then

�p(K ) ≤ �p(L),

with equality if and only if K and L are dilates.

Wang in [] gave the following conclusion; this result is a very useful tool for the fol-
lowing proofs.

Lemma. If�p :Kn
e →Kn

e , is an Lp Blaschke-Minkowski homomorphism, then for K ,L ∈
Kn

e ,

Vp(K ,�pL) = Vp(L,�pK ).

Proof of Theorem . Since N ∈ ωn
p , then there exists Z ∈Zn

p such that

h(Z, ·) = fp(N , ·) –
n+p . (.)

By (.), (.), and (.), we consider

�–p(L,N)
�–p(K ,N)

=
∫
Sn– fp(N ,u)

–p
n+p dSp(L,u)∫

Sn– fp(N ,u)
–p
n+p dSp(K ,u)

=
∫
Sn– h(Z, ·)p dSp(L,u)∫
Sn– h(Z, ·)p dSp(K ,u)

=
Vp(L,Z)
Vp(K ,Z)

.

http://www.journalofinequalitiesandapplications.com/content/2014/1/131
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Since Z ∈Zn
p , letting Z =�pQ for Q ∈Kn

e , combining with Lemma ., we obtain

Vp(L,Z)
Vp(K ,Z)

=
Vp(L,�pQ)
Vp(K ,�pQ)

=
Vp(Q,�pL)
Vp(Q,�pK )

.

Therefore, if Vp(Q,�pK ) ≤ Vp(Q,�pL), then we have

�–p(L,N)≥ �–p(K ,N). (.)

Due to L ∈ ωn
p , taking N = L in (.), and together with (.) and inequality (.), we get

�p(L) ≥ �–p(K ,L)≥ �p(K )
n+p
n �p(L)

–p
n ,

i.e.,

�p(K ) ≤ �p(L). (.)

According to the equality conditions of (.) and (.), we see that equality holds in
(.) for n �= p >  if and only if K and L are dilates. �

Proof of Theorem . Since Q ∈ Kn
e , taking Q =�pM forM ∈ Kn

e , then

Vp(K ,Q)≤ Vp(L,Q)

can be written as

Vp(K ,�pM) ≤ Vp(L,�pM),

then from Lemma ., it follows that

Vp(M,�pK ) ≤ Vp(M,�pL). (.)

Since �pL ∈ Kn
e , letM =�pL in (.), together with (.) and (.), we can get

V (�pL) ≥ Vp(�pL,�pK ) ≥ V (�pL)
n–p
n V (�pK )

p
n , (.)

such that

V (�pK ) ≤ V (�pL). (.)

According to the equality conditions of (.) and (.), we see that equality holds in (.)
for n �= p >  if and only if K and L are dilates. �

We turn now to proof of Theorem .. To this end, associate with the Lp Blaschke-
Minkowski homomorphism �p, we define a new operatorM�p : Sn

e →Kn
e by

hp(M�pL, ·) = ρn+p(L, ·) ∗ h(F , ·). (.)

By (.), the operatorM�p is well defined.

http://www.journalofinequalitiesandapplications.com/content/2014/1/131
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Lemma . If K ∈ Kn
e , L ∈ Sne , n �= p > , then

Ṽ–p
(
L,�∗

pK
)
= Vp(K ,M�pL). (.)

Proof By (.), (.), (.), (.), (.), and (.), we have

Ṽ–p
(
L,�∗

pK
)
=

n

〈
ρ
n+p
L (u),ρ–p

�∗
pK
(u)

〉
=

n

〈
ρ
n+p
L (u),hp�pK (u)

〉
=

n

〈
ρ
n+p
L (u),

(
Sp(K ,u) ∗ h(F ,u)

)〉
=

n

〈
ρ
n+p
L (u) ∗ h(F ,u),Sp(K ,u)

〉
=

n

〈
hp(M�pL,u),Sp(K ,u)

〉
=

n

∫
Sn–

hp(M�pL,u)dSp(K ,u)

= Vp(K ,M�pL). �

Proof of Theorem . Since Q ∈Kn
e , taking Q =M�pN for any N ∈ Sne , then

Vp(K ,Q)≤ Vp(L,Q)

can be written as

Vp(K ,M�pN) ≤ Vp(L,M�pN). (.)

Combining with (.), (.) can be written as

Ṽ–p
(
N ,�∗

pK
) ≤ Ṽ–p

(
N ,�∗

pL
)
.

But N ∈ Sne , taking N =�∗
pL, together with (.) and inequality (.), we get

V
(
�∗

pL
) ≥ Ṽ–p

(
�∗

pL,�
∗
pK

)
≥ V

(
�∗

pL
) n+p

n V
(
�∗

pK
) –p

n , (.)

such that

V
(
�∗

pL
) ≤ V

(
�∗

pK
)
. (.)

According to the equality conditions of (.) and (.), we see that equality holds in (.)
for n �= p >  if and only if K and L are dilates. �
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