795 research outputs found
More on Supersymmetric Domain Walls, N Counting and Glued Potentials
Various features of domain walls in supersymmetric gluodynamics are
discussed. We give a simple field-theoretic interpretation of the phenomenon of
strings ending on the walls recently conjectured by Witten. An explanation of
this phenomenon in the framework of gauge field theory is outlined. The
phenomenon is argued to be particularly natural in supersymmetric theories
which support degenerate vacuum states with distinct physical properties. The
issue of existence (or non-existence) of the BPS saturated walls in the
theories with glued (super)potentials is addressed. The amended
Veneziano-Yankielowicz effective Lagrangian belongs to this class. The physical
origin of the cusp structure of the effective Lagrangian is revealed, and the
limitation it imposes on the calculability of the wall tension is explained.
Related problems are considered. In particular, it is shown that the so called
discrete anomaly matching, when properly implemented, does not rule out the
chirally symmetric phase of supersymmetric gluodynamics, contrary to recent
claims.Comment: 40 pages, Latex, 5 figures. Several references added, final version
to be published in Physical Review
Calculation of the interspecies s-wave scattering length in an ultracold Na-Rb vapor
We report the calculation of the interspecies scattering length for the
sodium-rubidium (Na-Rb) system. We present improved hybrid potentials for the
singlet and triplet ground states of the NaRb
molecule, and calculate the singlet and triplet scattering lengths and
for the isotopomers NaRb and NaRb. Using
these values, we assess the prospects for producing a stable two-species
Bose-Einstein condensate in the Na-Rb system.Comment: v2: report correct units in Table captions, fix error in conclusions
for NaRb TBEC. Otherwise, more concise presentation, typos
fixed. 6 pages, 1 figur
Am I getting an accurate picture: a tool to assess clinical handover in remote settings?
BACKGROUND: Good clinical handover is critical to safe medical care. Little research has investigated handover in rural settings. In a remote setting where nurses and medical students give telephone handover to an aeromedical retrieval service, we developed a tool by which the receiving clinician might assess the handover; and investigated factors impacting on the reliability and validity of that assessment. METHODS: Researchers consulted with clinicians to develop an assessment tool, based on the ISBAR handover framework, combining validity evidence and the existing literature. The tool was applied 'live' by receiving clinicians and from recorded handovers by academic assessors. The tool's performance was analysed using generalisability theory. Receiving clinicians and assessors provided feedback. RESULTS: Reliability for assessing a call was good (G = 0.73 with 4 assessments). The scale had a single factor structure with good internal consistency (Cronbach's alpha = 0.8). The group mean for the global score for nurses and students was 2.30 (SD 0.85) out of a maximum 3.0, with no difference between these sub-groups. CONCLUSIONS: We have developed and evaluated a tool to assess high-stakes handover in a remote setting. It showed good reliability and was easy for working clinicians to use. Further investigation and use is warranted beyond this setting
Positive youth development in swimming: clarification and consensus of key psychosocial assets
The purpose of this study was to gain a more cohesive understanding of the assets considered necessary to develop in young swimmers to ensure both individual and sport specific development. This two stage study involved (a) a content analysis of key papers to develop a list of both psychosocial skills for performance enhancement and assets associated with positive youth development, and (b) in-depth interviews involving ten expert swim coaches, practitioners and youth sport scholars. Five higher order categories containing seventeen individual assets emerged. These results are discussed in relation to both existing models of positive youth development and implications for coaches, practitioners and parents when considering the psychosocial development of young British swimmers
Recent translational research: stem cells as the roots of breast cancer
Common phenotypes of cancer and stem cells suggest that breast cancers arise from stem cells. Breast epithelial cells with stem cell phenotypes have been shown to be more susceptible to immortalization and neoplastic transformation. Breast tumor stem cells with CD44(+)/CD24(-/low)Lineage(- )markers have been isolated. The role of these cells in tumor progression and clinical outcome is not clear. The relationship between breast stem cell and tumor stem cell may be elucidated by further studies of carcinogenesis of nonadherent mammosphere cells with stem cell features and by derivation of CD44(+)/CD24(-/low )cells from an adherent breast epithelial stem cell type
Optimal designs for rational function regression
We consider optimal non-sequential designs for a large class of (linear and
nonlinear) regression models involving polynomials and rational functions with
heteroscedastic noise also given by a polynomial or rational weight function.
The proposed method treats D-, E-, A-, and -optimal designs in a
unified manner, and generates a polynomial whose zeros are the support points
of the optimal approximate design, generalizing a number of previously known
results of the same flavor. The method is based on a mathematical optimization
model that can incorporate various criteria of optimality and can be solved
efficiently by well established numerical optimization methods. In contrast to
previous optimization-based methods proposed for similar design problems, it
also has theoretical guarantee of its algorithmic efficiency; in fact, the
running times of all numerical examples considered in the paper are negligible.
The stability of the method is demonstrated in an example involving high degree
polynomials. After discussing linear models, applications for finding locally
optimal designs for nonlinear regression models involving rational functions
are presented, then extensions to robust regression designs, and trigonometric
regression are shown. As a corollary, an upper bound on the size of the support
set of the minimally-supported optimal designs is also found. The method is of
considerable practical importance, with the potential for instance to impact
design software development. Further study of the optimality conditions of the
main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory
and additional example
All-sky search for time-integrated neutrino emission from astrophysical sources with 7 years of IceCube data
Since the recent detection of an astrophysical flux of high energy neutrinos,
the question of its origin has not yet fully been answered. Much of what is
known about this flux comes from a small event sample of high neutrino purity,
good energy resolution, but large angular uncertainties. In searches for
point-like sources, on the other hand, the best performance is given by using
large statistics and good angular reconstructions. Track-like muon events
produced in neutrino interactions satisfy these requirements. We present here
the results of searches for point-like sources with neutrinos using data
acquired by the IceCube detector over seven years from 2008--2015. The
discovery potential of the analysis in the northern sky is now significantly
below , on average
lower than the sensitivity of the previously published analysis of four
years exposure. No significant clustering of neutrinos above background
expectation was observed, and implications for prominent neutrino source
candidates are discussed.Comment: 19 pages, 17 figures, 3 tables; ; submitted to The Astrophysical
Journa
Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data
The IceCube Collaboration has previously discovered a high-energy
astrophysical neutrino flux using neutrino events with interaction vertices
contained within the instrumented volume of the IceCube detector. We present a
complementary measurement using charged current muon neutrino events where the
interaction vertex can be outside this volume. As a consequence of the large
muon range the effective area is significantly larger but the field of view is
restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have
been analyzed using a likelihood approach based on the reconstructed muon
energy and zenith angle. At the highest neutrino energies between 191 TeV and
8.3 PeV a significant astrophysical contribution is observed, excluding a
purely atmospheric origin of these events at significance. The
data are well described by an isotropic, unbroken power law flux with a
normalization at 100 TeV neutrino energy of
and a hard spectral index of . The observed spectrum is
harder in comparison to previous IceCube analyses with lower energy thresholds
which may indicate a break in the astrophysical neutrino spectrum of unknown
origin. The highest energy event observed has a reconstructed muon energy of
which implies a probability of less than 0.005% for
this event to be of atmospheric origin. Analyzing the arrival directions of all
events with reconstructed muon energies above 200 TeV no correlation with known
-ray sources was found. Using the high statistics of atmospheric
neutrinos we report the currently best constraints on a prompt atmospheric muon
neutrino flux originating from charmed meson decays which is below in
units of the flux normalization of the model in Enberg et al. (2008).Comment: 20 pages, 21 figure
Dynamics of coherently pumped lasers with linearly polarized pump and generated fields
The influence of light polarization on the dynamics of an optically pumped single-mode laser with a homogeneously broadened four-level medium is theoretically investigated in detail. Pump and laser fields with either parallel or crossed linear polarizations are considered, as are typical in far-infrared-laser experiments. Numerical simulations reveal dramatically different dynamic behaviors for these two polarization configurations. The analysis of the model equations allows us to find the physical origin of both behaviors. In particular, the crossed-polarization configuration is shown to be effective in decoupling the pump and laser fields, thus allowing for the appearance of Lorenz-type dynamics
- …