15 research outputs found

    Lectin staining shows no evidence of involvement of glycocalyx/mucous layer carbohydrate structures in development of celiac disease

    Get PDF
    The presence of unique carbohydrate structures in the glycocalyx/mucous layer of the intestine may be involved in a susceptibility to celiac disease (CD) by serving as attachment sites for bacteria. This host-microbiota interaction may influence the development of CD and possibly other diseases with autoimmune components. We examined duodenal biopsies from a total of 30 children, of which 10 had both celiac disease (CD) and type 1 diabetes (T1D); 10 had CD alone; and 10 were suspected of having gastrointestinal disease, but had normal duodenal histology (non-CD controls). Patients with both CD and T1D were examined before and after remission following a gluten-free diet. We performed lectin histochemistry using peanut agglutinin (PNA) and Ulex europaeus agglutinin (UEA) staining for Gal-β(1,3)-GalNAc and Fucα1-2Gal-R, respectively, of the glycocalyx/mucous layer. The staining was scored based on dissemination of stained structures on a scale from 0 to 3. Evaluation of the scores revealed no difference between biopsies obtained before and after remission in the group of children with both CD and T1D. A comparison of this pre-remission group with the children who had CD alone or the non-CD controls also showed no significant differences. Based on our material, we found no indication that the presence of Gal-β(1,3)-GalNAc or Fucα1-2Gal-R is involved in the susceptibility to CD, or that the disease process affects the expression of these carbohydrates

    Multicentre comparison of a diagnostic assay: Aquaporin-4 antibodies in neuromyelitis optica

    Get PDF
    Objective Antibodies to cell surface central nervous system proteins help to diagnose conditions which often respond to immunotherapies. The assessment of antibody assays needs to reflect their clinical utility. We report the results of a multicentre study of aquaporin (AQP) 4 antibody (AQP4-Ab) assays in neuromyelitis optica spectrum disorders (NMOSD). Methods Coded samples from patients with neuromyelitis optica (NMO) or NMOSD (101) and controls (92) were tested at 15 European diagnostic centres using 21 assays including live (n=3) or fixed cell-based assays (n=10), flow cytometry (n=4), immunohistochemistry (n=3) and ELISA (n=1). Results Results of tests on 92 controls identified 12assays as highly specific (0-1 false-positive results). 32 samples from 50 (64%) NMO sera and 34 from 51 (67%) NMOSD sera were positive on at least two of the 12 highly specific assays, leaving 35 patients with seronegative NMO/spectrum disorder (SD). On the basis of a combination of clinical phenotype and the highly specific assays, 66 AQP4-Ab seropositive samples were used to establish the sensitivities (51.5-100%) of all 21 assays. The specificities (85.8-100%) were based on 92 control samples and 35 seronegative NMO/SD patient samples. Conclusions The cell-based assays were most sensitive and specific overall, but immunohistochemistry or flow cytometry could be equally accurate in specialist centres. Since patients with AQP4-Ab negative NMO/SD require different management, the use of both appropriate control samples and defined seronegative NMOSD samples is essential to evaluate these assays in a clinically meaningful way. The process described here can be applied to the evaluation of other antibody assays in the newly evolving field of autoimmune neurology

    Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencing

    Get PDF
    Objectives Systemic lupus erythematosus (SLE) is an autoimmune disease with extensive heterogeneity in disease presentation between patients, which is likely due to an underlying molecular diversity. Here, we aimed at elucidating the genetic aetiology of SLE from the immunity pathway level to the single variant level, and stratify patients with SLE into distinguishable molecular subgroups, which could inform treatment choices in SLE. Methods We undertook a pathway-centred approach, using sequencing of immunological pathway genes. Altogether 1832 candidate genes were analysed in 958 Swedish patients with SLE and 1026 healthy individuals. Aggregate and single variant association testing was performed, and we generated pathway polygenic risk scores (PRS). Results We identified two main independent pathways involved in SLE susceptibility: T lymphocyte differentiation and innate immunity, characterised by HLA and interferon, respectively. Pathway PRS defined pathways in individual patients, who on average were positive for seven pathways. We found that SLE organ damage was more pronounced in patients positive for the T or B cell receptor signalling pathways. Further, pathway PRS-based clustering allowed stratification of patients into four groups with different risk score profiles. Studying sets of genes with priors for involvement in SLE, we observed an aggregate common variant contribution to SLE at genes previously reported for monogenic SLE as well as at interferonopathy genes. Conclusions Our results show that pathway risk scores have the potential to stratify patients with SLE beyond clinical manifestations into molecular subsets, which may have implications for clinical follow-up and therapy selection.Funding Agencies|AstraZeneca-Science for Life Laboratory Research Collaboration grant (DISSECT); Swedish Research Council for Medicine and Health [2018-02399, 2018-02535]; Swedish Rheumatism Association; King Gustav Vs 80-year Foundation; Swedish-Heart-Lung foundationSwedish Heart-Lung Foundation; Wallenberg Scholar Award; Swedish Society of Medicine; Science for Life Laboratory; Swedish Research Council (VR-RFI)Swedish Research Council; Uppsala University; Knut and Alice Wallenberg FoundationKnut &amp; Alice Wallenberg Foundation</p

    Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencing

    No full text
    Objectives Systemic lupus erythematosus (SLE) is an autoimmune disease with extensive heterogeneity in disease presentation between patients, which is likely due to an underlying molecular diversity. Here, we aimed at elucidating the genetic aetiology of SLE from the immunity pathway level to the single variant level, and stratify patients with SLE into distinguishable molecular subgroups, which could inform treatment choices in SLE. Methods We undertook a pathway-centred approach, using sequencing of immunological pathway genes. Altogether 1832 candidate genes were analysed in 958 Swedish patients with SLE and 1026 healthy individuals. Aggregate and single variant association testing was performed, and we generated pathway polygenic risk scores (PRS). Results We identified two main independent pathways involved in SLE susceptibility: T lymphocyte differentiation and innate immunity, characterised by HLA and interferon, respectively. Pathway PRS defined pathways in individual patients, who on average were positive for seven pathways. We found that SLE organ damage was more pronounced in patients positive for the T or B cell receptor signalling pathways. Further, pathway PRS-based clustering allowed stratification of patients into four groups with different risk score profiles. Studying sets of genes with priors for involvement in SLE, we observed an aggregate common variant contribution to SLE at genes previously reported for monogenic SLE as well as at interferonopathy genes. Conclusions Our results show that pathway risk scores have the potential to stratify patients with SLE beyond clinical manifestations into molecular subsets, which may have implications for clinical follow-up and therapy selection
    corecore