86 research outputs found

    EXIOBASE 3: Developing a time series of detailed environmentally extended multi-regional input-output tables

    Get PDF
    Environmentally extended multiregional input-output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental-Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply-use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as repor ted by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time

    Beyond aggression: Androgen-receptor blockade modulates social interaction in wild meerkats

    Get PDF
    In male vertebrates, androgens are inextricably linked to reproduction, social dominance, and aggression, often at the cost of paternal investment or prosociality. Testosterone is invoked to explain rank-related reproductive differences, but its role within a status class, particularly among subordinates, is underappreciated. Recent evidence, especially for monogamous and cooperatively breeding species, suggests broader androgenic mediation of adult social interaction. We explored the actions of androgens in subordinate, male members of a cooperatively breeding species, the meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in the field, by treating subordinate males with the antiandrogen, flutamide. We monitored androgen concentrations (via baseline serum and time-sequential fecal sampling) and recorded behavior within their groups (via focal observation). Relative to controls, flutamide-treated animals initiated less and received more high-intensity aggression (biting, threatening, feeding competition), engaged in more prosocial behavior (social sniffing, grooming, huddling), and less frequently initiated play or assumed a ‘dominant’ role during play, revealing significant androgenic effects across a broad range of social behavior. By contrast, guarding or vigilance and measures of olfactory and vocal communication in subordinate males appeared unaffected by flutamide treatment. Thus, androgens in male meerkat helpers are aligned with the traditional trade-off between promoting reproductive and aggressive behavior at a cost to affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show a more pervasive role for androgens in adult social behavior than is often recognized, with possible relevance for understanding tradeoffs in cooperative systems

    Author's personal copy Review Behavioral neuroendocrinology and treatment of anorexia nervosa

    No full text
    a b s t r a c t Outcome in anorexia nervosa remains poor and a new way of looking at this condition is therefore needed. To this aim, we review the effects of food restriction and starvation in humans. It is suggested that body weight remains stable and relatively low when the access to food requires a considerable amount of physical activity. In this condition, the human homeostatic phenotype, body fat content is also low and as a consequence, the synthesis and release of brain neurotransmitters are modified. As an example, the role of neuropeptide Y is analyzed in rat models of this state. It is suggested that the normal behavioral role of neuropeptide Y is to facilitate the search for food and switch attention from sexual stimuli to food. Descriptive neuroendocrine studies on patients with anorexia nervosa have not contributed to the management of the patients and the few studies in which hormones have been administered have, at best, reversed an endocrine consequence secondary to starvation. In a modified framework for understanding the etiology and treatment of anorexia nervosa it is suggested that the condition emerges because neural mechanisms of reward and attention are engaged. The neural neuropeptide Y receptor system may be involved in the maintenance of the behavior of eating disorder patients because the localization of these receptors overlaps with the neural systems engaged in cue-conditioned eating in limbic and cortical areas. The eating behavior of patients with anorexia nervosa, and other eating disorders as well, is viewed as a cause of the psychological changes of the patients. Patients are trained to re-learn normal eating habits using external support and as they do, their symptoms, including the psychological symptoms, dissolve

    Behavioral neuroendocrinology and treatment of anorexia nervosa

    No full text
    Outcome in anorexia nervosa remains poor and a new way of looking at this condition is therefore needed. To this aim, we review the effects of food restriction and starvation in humans. It is suggested that body weight remains stable and relatively low when the access to food requires a considerable amount of physical activity. In this condition, the human homeostatic phenotype, body fat content is also low and as a consequence, the synthesis and release of brain neurotransmitters are modified. As an example, the role of neuropeptide Y is analyzed in rat models of this state. It is suggested that the normal behavioral role of neuropeptide Y is to facilitate the search for food and switch attention from sexual stimuli to food. Descriptive neuroendocrine studies on patients with anorexia nervosa have not contributed to the management of the patients and the few studies in which hormones have been administered have, at best, reversed an endocrine consequence secondary to starvation. In a modified framework for understanding the etiology and treatment of anorexia nervosa it is suggested that the condition emerges because neural mechanisms of reward and attention are engaged. The neural neuropeptide Y receptor system may be involved in the maintenance of the behavior of eating disorder patients because the localization of these receptors overlaps with the neural systems engaged in cue-conditioned eating in limbic and cortical areas. The eating behavior of patients with anorexia nervosa, and other eating disorders as well, is viewed as a cause of the psychological changes of the patients. Patients are trained to re-learn normal eating habits using external support and as they do, their symptoms, including the psychological symptoms, dissolve.
    • 

    corecore