270 research outputs found

    A comparison of the strong lensing properties of the Sersic and the NFW profiles

    Full text link
    We investigate the strong lensing properties of the Sersic profile as an alternative to the NFW profile, focusing on applications to lens modelling of clusters. Given an underlying Sersic dark matter profile, we study whether an NFW profile can provide an acceptable fit to strong lensing constraints in the form of single or multiple measured Einstein radii. We conclude that although an NFW profile that fits the lensing constraints can be found in many cases, the derived parameters may be biased. In particular, we find that for n~2, which corresponds to massive clusters, the mass at r_200 of the best fit NFW is overestimated (by a factor of ~2) and the concentration is very low (c~2). The differences are important enough to warrant the inclusion of Sersic profile for future analysis of strong lensing clusters.Comment: 19 pages (single column format), 11 figures. Accepted for publication by JCA

    A Bayesian approach to strong lensing modelling of galaxy clusters

    Full text link
    In this paper, we describe a procedure for modelling strong lensing galaxy clusters with parametric methods, and to rank models quantitatively using the Bayesian evidence. We use a publicly available Markov chain Monte-Carlo (MCMC) sampler ('Bayesys'), allowing us to avoid local minima in the likelihood functions. To illustrate the power of the MCMC technique, we simulate three clusters of galaxies, each composed of a cluster-scale halo and a set of perturbing galaxy-scale subhalos. We ray-trace three light beams through each model to produce a catalogue of multiple images, and then use the MCMC sampler to recover the model parameters in the three different lensing configurations. We find that, for typical Hubble Space Telescope (HST)-quality imaging data, the total mass in the Einstein radius is recovered with ~1-5% error according to the considered lensing configuration. However, we find that the mass of the galaxies is strongly degenerated with the cluster mass when no multiple images appear in the cluster centre. The mass of the galaxies is generally recovered with a 20% error, largely due to the poorly constrained cut-off radius. Finally, we describe how to rank models quantitatively using the Bayesian evidence. We confirm the ability of strong lensing to constrain the mass profile in the central region of galaxy clusters in this way. Ultimately, such a method applied to strong lensing clusters with a very large number of multiple images may provide unique geometrical constraints on cosmology. The implementation of the MCMC sampler used in this paper has been done within the framework of the Lenstool software package, which is publicly available.Comment: Accepted to "Gravitational Lensing" Focus Issue of the New Journal of Physics (invited), 35 pages, 11 figures at reduced resolutio

    Smooth HI Low Column Density Outskirts In Nearby Galaxies

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astronomical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-3881/aabbaa.The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H i) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H i at a column density of ∌5 × 10 19 cm -2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H i disks, we study the azimuthally averaged H i column density profiles of 17 nearby galaxies from the H i Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H i emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H i maps. With this method, we improve our sensitivity to outer-disk H i emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H i radial profiles: the alleged signature of ionization by the extragalactic background.Peer reviewedFinal Accepted Versio

    New Approaches To Photometric Redshift Prediction Via Gaussian Process Regression In The Sloan Digital Sky Survey

    Full text link
    Expanding upon the work of Way and Srivastava 2006 we demonstrate how the use of training sets of comparable size continue to make Gaussian process regression (GPR) a competitive approach to that of neural networks and other least-squares fitting methods. This is possible via new large size matrix inversion techniques developed for Gaussian processes (GPs) that do not require that the kernel matrix be sparse. This development, combined with a neural-network kernel function appears to give superior results for this problem. Our best fit results for the Sloan Digital Sky Survey (SDSS) Main Galaxy Sample using u,g,r,i,z filters gives an rms error of 0.0201 while our results for the same filters in the luminous red galaxy sample yield 0.0220. We also demonstrate that there appears to be a minimum number of training-set galaxies needed to obtain the optimal fit when using our GPR rank-reduction methods. We find that morphological information included with many photometric surveys appears, for the most part, to make the photometric redshift evaluation slightly worse rather than better. This would indicate that most morphological information simply adds noise from the GP point of view in the data used herein. In addition, we show that cross-match catalog results involving combinations of the Two Micron All Sky Survey, SDSS, and Galaxy Evolution Explorer have to be evaluated in the context of the resulting cross-match magnitude and redshift distribution. Otherwise one may be misled into overly optimistic conclusions.Comment: 32 pages, ApJ in Press, 2 new figures, 1 new table of comparison methods, updated discussion, references and typos to reflect version in Pres

    Normal Globular Cluster Systems in Massive Low Surface Brightness Galaxies

    Full text link
    We present the results of a study of the globular cluster systems of 6 massive spiral galaxies, originally cataloged as low surface brightness galaxies but here shown to span a wide range of central surface brightness values, including two intermediate to low surface brightness galaxies. We used the Advanced Camera for Surveys on board HST to obtain photometry in the F475W and F775W bands and select sources with photometric and morphological properties consistent with those of globular clusters. A total of 206 candidates were identified in our target galaxies. From a direct comparison with the Galactic globular cluster system we derive specific frequency values for each galaxy that are in the expected range for late-type galaxies. We show that the globular cluster candidates in all galaxies have properties consistent with globular cluster systems of previously studied galaxies in terms of luminosity, sizes and color. We establish the presence of globular clusters in the two intermediate to low surface brightness galaxies in our sample and show that their properties do not have any significant deviation from the behavior observed in the other sample galaxies. Our results are broadly consistent with a scenario in which low surface brightness galaxies follow roughly the same evolutionary history as normal (i.e. high surface) brightness galaxies except at a much lower rate, but require the presence of an initial period of star formation intense enough to allow the formation of massive star clusters.Comment: 14 pages, 6 figures. AJ accepte

    Evolution of BCGs structural parameters in the last ∌\sim6 Gyr: feedback processes versus merger events

    Full text link
    We present results on the evolution in the last 6 Gyr of the structural parameters of two samples of brightest cluster galaxies (BCGs). The nearby sample of BCGs consist on 69 galaxies from the WINGS survey spanning a redshift range of 0.04<<z<<0.07. The intermediate redshift (0.3<<z<<0.6) sample is formed by 20 BCGs extracted from the Hubble Space Telescope archive. Both samples have similar spatial resolution and their host clusters have similar X-ray luminosities. We report an increase in the size of the BCGs from intermediate to local redshift. However, we do not detect any variation in the S\'ersic shape parameter in both samples. These results are proved to be robust since the observed tendencies are model independent. We also obtain significant correlations between some of the BCGs parameters and the main properties of the host clusters. More luminous, larger and centrally located BCGs are located in more massive and dominant galaxy clusters. These facts indicate that the host galaxy cluster has played an important role in the formation of their BCGs. We discuss the possible mechanisms that can explain the observed evolution of the structural parameters of the BCGs. We conclude that the main mechanisms that can explain the increase in size and the non-evolution in the S\'ersic shape parameter of the BCGs in the last 6 Gyr are feedback processes. This result disagrees with semi-analytical simulation results supporting that merging processes are the main responsible for the evolution of the BCGs until the present epoch.Comment: Accepted for publication in ApJ; 17 pages, 7 figures; 10 table

    HST/WFPC2 imaging of the circumnuclear structure of LLAGNs. I Data and nuclear morphology

    Full text link
    To advance our knowledge of the nature of the central source in LLAGNs and its relation with stellar clusters, we are carrying out several imaging projects with HST at near-UV, optical and near-IR wavelengths. In this paper, we present the first results obtained with observations of the central regions of 57 LLAGNs imaged with the WFPC2 through any of the V (F555W, F547M, F614W) and I (F791W, F814W) filters that are available in the HST archive. The sample contains 34% of the LINERs and 36% of the TOs in the Palomar sample. The mean spatial resolution of these images is 10 pc. With these data we have built an atlas that includes structural maps for all the galaxies, useful to identify compact nuclear sources and, additionally, to characterize the circumnuclear environment of LLAGNs, determining the frequency of dust and its morphology. The main results obtained are: 1) We have not found any correlation between the presence of nuclear compact sources and emission-line type. Thus, nucleated LINERs are as frequent as nucleated TOs. 2) The nuclei of "Young-TOs" are brighter than the nuclei of "Old-TOs" and LINERs. These results confirm our previous results that Young-TOs are separated from other LLAGNs classes in terms of their central stellar population properties and brightness. 3) Circumnuclear dust is detected in 88% of the LLAGNs, being almost ubiquitous in TOs. 4) The dust morphology is complex and varied, from nuclear spiral lanes to chaotic filaments and nuclear disk-like structures. Chaotic filaments are as frequent as dust spirals; but nuclear disks are mainly seen in LINERs. These results suggest an evolutionary sequence of the dust in LLAGNs, LINERs being the more evolved systems and Young-TOs the youngest. The full collection of figures are at http://www.iaa.es/~rosa/research/LLAGNs2007/LLAGNs-HSTIma1.htmlComment: Paper accepted in AJ, pdf file and the full collection of figures are at the ULR: http://www.iaa.es/~rosa/research/LLAGNs2007/LLAGNs-HSTIma1.htm

    Measuring the mass of the central black hole in the bulgeless galaxy ngc 4395 from gas dynamical modeling

    Get PDF
    NGC 4395 is a bulgeless spiral galaxy, harboring one of the nearest known type 1 Seyfert nuclei. Although there is no consensus on the mass of its central engine, several estimates suggest it is one of the lightest massive black holes (MBHs) known. We present the first direct dynamical measurement of the mass of this MBH from a combination of two-dimensional gas kinematic data, obtained with the adaptive optics assisted near-infrared integral field spectrograph Gemini/NIFS and high-resolution multiband photometric data from Hubble Space Telescope's Wide Field Camera 3. We use the photometric data to model the shape and stellar mass-to-light ratio of the nuclear star cluster (NSC). From the Gemini/NIFS observations, we derive the kinematics of warm molecular hydrogen gas as traced by emission through the H2 1–0 S(1) transition. These kinematics show a clear rotational signal, with a position angle orthogonal to NGC 4395's radio jet. Our best-fitting tilted ring models of the kinematics of the molecular hydrogen gas contain a black hole with mass M={4}-3+8× {10}5 M⊙ (3σ uncertainties) embedded in an NSC of mass M=2× {10}6 M⊙. Our black hole mass measurement is in excellent agreement with the reverberation mapping mass estimate of Peterson et al. but shows some tension with other mass measurement methods based on accretion signals

    Structure of the Galaxies in the NGC 80 Group

    Full text link
    BV-bands photometric data obtained at the 6-m telescope of the Special Astrophysical Observatory are used to analyze the structure of 13 large disk galaxies in the NGC 80 group. Nine of the 13 galaxies under consideration are classified by us as lenticular galaxies. The stellar populations in the galaxies are very different, from old ones with ages of T>10 Gyrs (IC 1541) to relatively young, with the ages of T<2-3 Gyr (IC 1548, NGC 85). In one case, current star formation is known (UCM 0018+2216). In most of the galaxies, more precisely in all of them more luminous than M(B) -18, two-tiered (`antitruncated') stellar disks are detected, whose radial surface brightness profiles can be fitted by two exponential segments with different scalelengths -- shorter near the center and longer at the periphery. All dwarf S0 galaxies with single-scalelength exponential disks are close companions to giant galaxies. Except for this fact, no dependence of the properties of S0 galaxies on distance from the center of the group is found. Morphological traces of minor merger are found in the lenticular galaxy NGC 85. Basing on the last two points, we conclude that the most probable mechanisms for the transformation of spirals into lenticular galaxies in groups are gravitational ones, namely, minor mergers and tidal interactions.Comment: 24 pages, 9 figures, slightly improved version of the paper published in the December, 2009, issue of the Astronomy Report

    A Symmetry-induced Model of Elliptical Galaxy Patterns

    Full text link
    S\'ersic (1968) generalized the de Vaucouleurs law which follows the projected (observed) one dimensional radial profile of elliptical galaxies closely and Dehnen (1993) proposed an analytical formula of the 3-dimensional light distributions whose projected line profile resembles the de Vaucouleurs law. This paper is involved to recover the Dehnen model and generalize the model to account for galaxy elliptical shapes by means of curvilinear coordinate systems and employing a symmetry principle. The symmetry principle maps an orthogonal coordinate system to a light distribution pattern. The coordinate system for elliptical galaxy patterns turns out to be the one which is formed by the complex-plane reciprocal transformation Z=1/WZ=1/W. The resulting spatial (3-dimensional) light distribution is spherically symmetric and has infinite gradient at its centre, which is called spherical-nucleus solution and is used to model galaxy central area. We can make changes of the coordinate system by cutting out some column areas of its definition domain, the areas containing the galaxy centre. The resulting spatial (3-dimensional) light distributions are axisymmetric or triaxial and have zero gradient at the centre, which are called elliptical-shape solutions and are used to model global elliptical patterns. The two types of logarithmic light distributions are added together to model full elliptical galaxy patterns. The model is a generalization of the Dehnen model. One of the elliptical-shape solutions permits realistic numerical calculation and is fitted to all R-band elliptical images from the Frei {\it et al.}(1996)'s galaxy sample. The fitting is satisfactory. This suggests that elliptical galaxy patterns can be represented in terms of a few basic parameters.Comment: 20 pages, 7 figure
    • 

    corecore