89 research outputs found

    Effect of Anodic Pretreatment on the Performance of Glassy Carbon Electrode in Acetonitrile and Electrooxidation of Para-substituted Phenols in Acetonitrile on Platinum and Glassy Carbon Electrode

    Get PDF
    In the first part of the work electropolymerisation of phenol was studied at glassy carbon electrode. Rapid fouling of its surface indicated the formation of coherent poly(phenyleneoxide) layer which was demonstrated by the repeated cyclic voltammetric scans. Effect of anodic pretreatment potential in acetonitrile solvent was also investigated and the results showed that at potentials higher than 2 V glassy carbon electrode becomes deactivated. Preanodisation of glassy carbon electrode at 3 V in acetonitrile resulted in diminished anodic peak currents by phenols. It was due to the partial deactivation of electrode surface and its extent increased with the pretreatment time. The electrooxidation of para-substituted phenols (p-Cl-phenol, p-NO2-phenol, p-tertbutylphenol, p-methoxyphenol) in acetonitrile resulted in no fouling layer on platinum electrode and the peak currents were significantly higher than in the first scan of unsubstituted phenol in the same concentration. Glassy carbon deactivated continuously by repeating the scans due to the solvent and bonding of products on the surface

    Electropolymerization of N,N'-Diphenylguanidine in Non-Aqueous Aprotic Solvents and Alcohols

    Get PDF
    Electrooxidation of N,N’-diphenylguanidine (1,3-diphenylguanidine) was investigated in aprotic (acetonitrile, acetone, dimethyl sulfoxide, dimethyl formamide, propyleneoxide, nitromethane) and alcoholic (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, benzyl alcohol) non-aqueous solvents at platinum electrode with cyclic voltammetry. Its concentration was 5 mM in most cases. In acetonitrile and acetone a sharp voltammetric peak appeared around 1 V vs. reference and currents measured in the subsequent scans showed that the electrode fouled quickly. In dimethyl formamide, the anodic peak heights decreased slowly in the subsequent scans but in dimethyl sulfoxide weak deactivation could be observed both in smaller and in higher concentration. In alcohols, continuous deactivation could be also observed during electrooxidation of N,N’-diphenylguanidine. The permeability studies showed that the structure of the formed polymer films varied significantly according to the solvent used for electrodeposition

    Decomposition of stellar populations in CosmoDC2 galaxies using SCARLET and Deep Learning

    Get PDF
    We are presenting a novel, Deep Learning based approach to estimate the normalized broad-band spectral energy distribution (SED) of different stellar populations in synthetic galaxies. In contrast to the non-parametric multiband source separation algorithm, SCARLET - where the SED and morphology are simultaneously fitted, in our study we provide a morphology-independent, statistical determination of the SEDs, where we only use the colour distribution of the galaxy. We developed a neural network (sedNN) that accurately predicts the SEDs of the old, red and young, blue stellar populations of realistic synthetic galaxies from the colour distribution of the galaxy-related pixels in simulated broad-band images. We trained and tested the network on a subset of the recently published CosmoDC2 simulated galaxy catalogue containing about 3600 galaxies. The model performance was compared to the results of SCARLET, where we found that sedNN can predict the SEDs with 4-5 per cent accuracy on average, which is about two times better than applying SCARLET. We also investigated the effect of this improvement on the flux determination accuracy of the bulge and disc. We found that using more accurate SEDs decreases the error in the flux determination of the components by approximately 30 per cent

    Temperature-Induced Change of Water Structure in Aqueous Solutions of Some Kosmotropic and Chaotropic Salts

    Get PDF
    The hydrogen bond structure of water was examined by comparing the temperature dependent OH-stretching bands of water and aqueous NaClO4, KClO4, Na2SO4, and K2SO4 solutions. Results called attention to the role of cations on top of the importance of anions determining the emerging structure of a multi-layered system consisting single water rings or multi-ring water-clusters

    Fluorescence spectroscopic evaluation of the interactions of quercetin, isorhamnetin, and quercetin-3'-sulfate with different albumins

    Get PDF
    Quercetin is one of the most commonly occurring flavonoids in nature. Although, quercetin and its metabolites express negligible fluorescence, the albumin-bound form of quercetin has a strong fluorescence property. Considering the structural variance of different albumins, we hypothesized that the fluorescence of albumin complexes of quercetin and its metabolites may vary significantly. Therefore, in this study the fluorescence enhancement of quercetin and some of its major metabolites in the presence of bovine (BSA), human (HSA), porcine (PSA), and rat serum albumins (RSA) were investigated by steady-state fluorescence spectroscopy in PBS buffer (pH 7.4). Among the tested quercetin metabolites, significant fluorescence signal was shown by albumin complexes of quercetin, isorhamnetin, and quercetin-3’-sulfate, while other metabolites (tamarixetin, quercetin-3-glucuronide, and isorhamnetin-3-glucuronide) expressed negligible fluorescence. BSA was the most potent enhancer of quercetin-3’-sulfate but it showed poor effects regarding other flavonoids. The strongest enhancement of isorhamnetin was caused by HSA, while it was less effective enhancer of quercetin and quercetin-3’-sulfate. PSA showed a strong fluorescence enhancement of quercetin and quercetin-3’-sulfate but it was poorly effective regarding isorhamnetin. RSA was the most potent enhancer of quercetin but it caused only a weak enhancement of isorhamnetin and quercetin-3’-sulfate. Large changes of the pH (such as pH 5.0 and pH 10.0) almost completely abolished the fluorescence signals of the complexes. Nevertheless, slight decrease (pH 7.0) reduced and slight increase (pH 7.8) generally enhanced the fluorescence of flavonoid-albumin complexes (only exceptions were quercetin-PSA and quercetin-RSA). Complex formations were also investigated by fluorescence quenching studies. Based on our results, the formations of quercetin-BSA, quercetin-HSA, isorhamnetin-BSA, isorhamnetin-HSA, isorhamnetin-PSA, and quercetin-3’-sulfate – HSA complexes followed 1:1 stoichiometry, while the presence of a secondary binding site of flavonoids was assumed regarding other tested albumin complexes. Our study highlights that albumins can induce significantly different fluorescence enhancement of flavonoids, and even the stoichiometry of flavonoid-albumin complexes may differ
    • …
    corecore