6 research outputs found

    Yield of new hemp varieties for medical purposes under semi-arid Mediterranean environment conditions

    Get PDF
    Under the effects of climate change new drought tolerant crops are imperative to introduce in irrigated agricultural areas of Mediterranean countries. In this sense, hemp (Cannabis sativa L.) represents an alternative in many semi-arid agricultural areas of Mediterranean basin because of its low water requirements and cost effectiveness when it is developed under non controlled conditions. The aim of this work was to evaluate the potential yield of five new hemp varieties (Sara, Pilar, Aida, Theresa, and Juani) cultivated under high tunnel conditions in a semi-arid Mediterranean area, and also to study the effect of plant density on active biomass production and cannabinoids biosynthesis (cannabidiol, CBD and cannabigerol, CBG) at different plant positions. The trial was conducted under plastic macro-tunnels during two seasons (2014 and 2015), from May to October. The agronomic response and the chemical profiles of the studied varieties were evaluated at the end of each season. Moreover, it was monitored the differentiation in terms of active biomass production and cannabinoids biosynthesis in different plant organ positions (at upper, medium, and lower). Additionally, during the second season, three different plant densities (PD1, 9,777; PD2, 7,333; and PD3, 5,866 plants· ha-1) were tested in order to define the the best of them for maximizing CBD and CBG productions. The findings highlighted significant differences in yield between cultivars within the CBD and CBG. Moreover, plant density was a determinant factor related to active biomass production and cannabinoids contents, PD3 representing a suitable strategy to maximize the cannabinoids production minimizing the requirements of rooted apical cuttings. These results allowed concluding that these new hemp cultivars together with the adopted agronomic practices in this experience would be very appropriate for CBD and CBG productions, being determinant to consider the plant density and the cultivar for both studied chemotypes.Under the effects of climate change new drought tolerant crops are imperative to introduce in irrigated agricultural areas of Mediterranean countries. In this sense, hemp (Cannabis sativa L.) represents an alternative in many semi-arid agricultural areas of Mediterranean basin because of its low water requirements and cost effectiveness when it is developed under non controlled conditions. The aim of this work was to evaluate the potential yield of five new hemp varieties (Sara, Pilar, Aida, Theresa, and Juani) cultivated under high tunnel conditions in a semi-arid Mediterranean area, and also to study the effect of plant density on active biomass production and cannabinoids biosynthesis (cannabidiol, CBD and cannabigerol, CBG) at different plant positions. The trial was conducted under plastic macro-tunnels during two seasons (2014 and 2015), from May to October. The agronomic response and the chemical profiles of the studied varieties were evaluated at the end of each season. Moreover, it was monitored the differentiation in terms of active biomass production and cannabinoids biosynthesis in different plant organ positions (at upper, medium, and lower). Additionally, during the second season, three different plant densities (PD1, 9,777; PD2, 7,333; and PD3, 5,866 plants· ha-1) were tested in order to define the the best of them for maximizing CBD and CBG productions. The findings highlighted significant differences in yield between cultivars within the CBD and CBG. Moreover, plant density was a determinant factor related to active biomass production and cannabinoids contents, PD3 representing a suitable strategy to maximize the cannabinoids production minimizing the requirements of rooted apical cuttings. These results allowed concluding that these new hemp cultivars together with the adopted agronomic practices in this experience would be very appropriate for CBD and CBG productions, being determinant to consider the plant density and the cultivar for both studied chemotypes

    Thermal desorption-ion mobility spectrometry: A rapid sensor for the detection of cannabinoids and discrimination of Cannabis Sativa L. chemotypes

    Full text link
    Existing analytical techniques used for the determination of cannabinoids in Cannabis sativa L. (Cannabis) plants mostly rely on chromatography-based methods. As a rapid alternative for the direct analysis of them, thermal desorption (TD)-ion mobility spectrometry (IMS) was used for obtaining spectral fingerprints of single cannabinoids from Cannabis plant extracts and from plant residues on hands after their manipulation. The ionization source was 63Ni, with automatic switchable polarity. Although in both ionization modes there were signals in the TD-IMS spectra of the plant extracts and residues that could be assigned to concrete cannabinoids and chemotypes, most of them could not be clearly distinguished. Alternatively, the global spectral data of the plant extracts and residues were pre-processed and then, using principal component analysis (PCA)-linear discriminant analysis (LDA), grouped in function of their chemotype in a more feasible way. Using this approach, the possibility of false positive responses was also studied analyzing other non-Cannabis plants and tobacco, which were clustered in a different group to those of Cannabis. Therefore, TD-IMS, as analytical tool, and PCA-LDA, as a strategy for data reduction and pattern recognition, can be applied for on-site chemotaxonomic discrimination of Cannabis varieties and detection of illegal marijuana since the IMS equipment is portable and the analysis time is highly short

    Cannabigerol action at cannabinoid CB1 and CB2 receptors and at CB1-CB2 heteroreceptor complexes

    Get PDF
    Cannabigerol (CBG) is one of the major phytocannabinoids present in Cannabis sativa L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties. The aim of this work was to investigate in parallel the binding properties of CBG to cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors and the effects of the compound on agonist activation of those receptors and of CB1-CB2 heteroreceptor complexes. Using [3H]-CP-55940, CBG competed with low micromolar Ki values the binding to CB1R and CB2R. Homogeneous binding in living cells, which is only possible for the CB2R, provided a nanomolar Ki value. In contrast, CBG competed the binding of [3H]-WIN-55,212-2 to CB2R but not to CB1R (2.7 versus >30 µM). The phytocannabinoid modulated signaling mediated by receptors and receptor heteromers even at low concentrations of 0.1-1 µM. cAMP, pERK, ÿ-arrestin recruitment and label-free assays in HEK-293T cells expressing the receptors and treated with endocannabinoids or selective agonists proved that CBG is a partial agonist of CB2R. The action on cells expressing heteromers was similar to that obtained in cells expressing the CB2R. The effect of CBG on CB1R was measurable but the underlying molecular mechanisms remain uncertain. The results indicate that CBG is indeed effective as regulator of endocannabinoid signaling

    Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1–CB2 Heteroreceptor Complexes

    Get PDF
    Cannabigerol (CBG) is one of the major phytocannabinoids present in Cannabis sativa L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties. The aim of this work was to investigate in parallel the binding properties of CBG to cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors and the effects of the compound on agonist activation of those receptors and of CB1–CB2 heteroreceptor complexes. Using [3H]-CP-55940, CBG competed with low micromolar Ki values the binding to CB1R and CB2R. Homogeneous binding in living cells, which is only technically possible for the CB2R, provided a 152 nM Ki value. Also interesting, CBG competed the binding of [3H]-WIN-55,212-2 to CB2R but not to CB1R (Ki: 2.7 versus >30 μM). The phytocannabinoid modulated signaling mediated by receptors and receptor heteromers even at low concentrations of 0.1–1 μM. cAMP, pERK, β-arrestin recruitment and label-free assays in HEK-293T cells expressing the receptors and treated with endocannabinoids or selective agonists proved that CBG is a partial agonist of CB2R. The action on cells expressing heteromers was similar to that obtained in cells expressing the CB2R. The effect of CBG on CB1R was measurable but the underlying molecular mechanisms remain uncertain. The results indicate that CBG is indeed effective as regulator of endocannabinoid signaling

    Soy Niña

    Get PDF
    Este libro pretende contribuir al reencuentro de la educación con esas finalidades que verdaderamente importan a una niña o un niño: ser feliz, jugar, vivir juntos y (no) aprender. Para ello hemos puesto el arte, nuestras experiencias y el saber acumulado al servicio del disfrute, el cuestionamiento, el análisis crítico y la construcción común de un presente deseable. Un texto colaborativo coordinado por Ignacio Calderón Almendros y realizado por alumnado de Educación y Cambio Social en el Grado en Educación Infantil de la Universidad de Málaga

    Cannabigerol action at cannabinoid CB1 and CB2 receptors and at CB1-CB2 heteroreceptor complexes

    No full text
    Cannabigerol (CBG) is one of the major phytocannabinoids present in Cannabis sativa L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties. The aim of this work was to investigate in parallel the binding properties of CBG to cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors and the effects of the compound on agonist activation of those receptors and of CB1-CB2 heteroreceptor complexes. Using [3H]-CP-55940, CBG competed with low micromolar Ki values the binding to CB1R and CB2R. Homogeneous binding in living cells, which is only possible for the CB2R, provided a nanomolar Ki value. In contrast, CBG competed the binding of [3H]-WIN-55,212-2 to CB2R but not to CB1R (2.7 versus >30 µM). The phytocannabinoid modulated signaling mediated by receptors and receptor heteromers even at low concentrations of 0.1-1 µM. cAMP, pERK, ÿ-arrestin recruitment and label-free assays in HEK-293T cells expressing the receptors and treated with endocannabinoids or selective agonists proved that CBG is a partial agonist of CB2R. The action on cells expressing heteromers was similar to that obtained in cells expressing the CB2R. The effect of CBG on CB1R was measurable but the underlying molecular mechanisms remain uncertain. The results indicate that CBG is indeed effective as regulator of endocannabinoid signaling
    corecore