24,246 research outputs found

    Evidence of ongoing radial migration in NGC 6754: Azimuthal variations of the gas properties

    Get PDF
    Understanding the nature of spiral structure in disk galaxies is one of the main, and still unsolved questions in galactic astronomy. However, theoretical works are proposing new testable predictions whose detection is becoming feasible with recent development in instrumentation. In particular, streaming motions along spiral arms are expected to induce azimuthal variations in the chemical composition of a galaxy at a given galactic radius. In this letter we analyse the gas content in NGC 6754 with VLT/MUSE data to characterise its 2D chemical composition and Hα\alpha line-of-sight velocity distribution. We find that the trailing (leading) edge of the NGC 6754 spiral arms show signatures of tangentially-slower, radially-outward (tangentially-faster, radially-inward) streaming motions of metal-rich (poor) gas over a large range of radii. These results show direct evidence of gas radial migration for the first time. We compare our results with the gas behaviour in a NN-body disk simulation showing spiral morphological features rotating with a similar speed as the gas at every radius, in good agreement with the observed trend. This indicates that the spiral arm features in NGC 6754 may be transient and rotate similarly as the gas does at a large range of radii.Comment: 8 pages, 4 figures, accepted for publication in ApJL 2016 September 2

    Optimal energy quanta to current conversion

    Full text link
    We present a microscopic discussion of a nano-sized structure which uses the quantization of energy levels and the physics of single charge Coulomb interaction to achieve an optimal conversion of heat flow to directed current. In our structure the quantization of energy levels and the Coulomb blockade lead to the transfer of quantized packets of energy from a hot source into an electric conductor to which it is capacitively coupled. The fluctuation generated transfer of a single energy quantum translates into the directed motion of a single electron. Thus in our structure the ratio of the charge current to the heat current is determined by the ratio of the charge quantum to the energy quantum. An important novel aspect of our approach is that the direction of energy flow and the direction of electron motion are decoupled.Comment: 9 pages, 6 figure

    Vortices in a rotating BEC under extreme elongation

    Full text link
    We investigate a non-axisymmetric rotating BEC in a limit of rotation frequency for which the BEC transforms into a quasi-one-dimensional system. We compute the vortex lattice wavefunction by minimizing the Gross-Pitaevskii energy functional in the lowest Landau level approximation for different confinement potentials. The condensate typically presents a changing number of vortex rows as a function of the interaction strength or rotation-confinement ratio. More specifically, the vortex lattices can be classified into two classes according to their symmetry with respect to the longitudinal axis. These two classes correspond to different local minima of the energy functional and evolve independently as a function of the various parameters.Comment: 8 pages, 12 figure

    Inter- and intra-layer excitons in MoS2_2/WS2_2 and MoSe2_2/WSe2_2 heterobilayers

    Get PDF
    Accurately described excitonic properties of transition metal dichalcogenide heterobilayers (HBLs) are crucial to comprehend the optical response and the charge carrier dynamics of them. Excitons in multilayer systems posses inter or intralayer character whose spectral positions depend on their binding energy and the band alignment of the constituent single-layers. In this study, we report the electronic structure and the absorption spectra of MoS2_2/WS2_2 and MoSe2_2/WSe2_2 HBLs from first-principles calculations. We explore the spectral positions, binding energies and the origins of inter and intralayer excitons and compare our results with experimental observations. The absorption spectra of the systems are obtained by solving the Bethe-Salpeter equation on top of a G0_0W0_0 calculation which corrects the independent particle eigenvalues obtained from density functional theory calculations. Our calculations reveal that the lowest energy exciton in both HBLs possesses interlayer character which is decisive regarding their possible device applications. Due to the spatially separated nature of the charge carriers, the binding energy of inter-layer excitons might be expected to be considerably smaller than that of intra-layer ones. However, according to our calculations the binding energy of lowest energy interlayer excitons is only ∼\sim 20\% lower due to the weaker screening of the Coulomb interaction between layers of the HBLs. Therefore, it can be deduced that the spectral positions of the interlayer excitons with respect to intralayer ones are mostly determined by the band offset of the constituent single-layers. By comparing oscillator strengths and thermal occupation factors, we show that in luminescence at low temperature, the interlayer exciton peak becomes dominant, while in absorption it is almost invisible.Comment: 17 pages, 4 figure

    Natural PQ symmetry in the 3-3-1 model with a minimal scalar sector

    Full text link
    In the framework of a 3-3-1 model with a minimal scalar sector we make a detailed study concerning the implementation of the PQ symmetry in order to solve the strong CP problem. For the original version of the model, with only two scalar triplets, we show that the entire Lagrangian is invariant under a PQ-like symmetry but no axion is produced since an U(1) subgroup remains unbroken. Although in this case the strong CP problem can still be solved, the solution is largely disfavored since three quark states are left massless to all orders in perturbation theory. The addition of a third scalar triplet removes the massless quark states but the resulting axion is visible. In order to become realistic the model must be extended to account for massive quarks and invisible axion. We show that the addition of a scalar singlet together with a Z_N discrete gauge symmetry can successfully accomplish these tasks and protect the axion field against quantum gravitational effects. To make sure that the protecting discrete gauge symmetry is anomaly free we use a discrete version of the Green-Schwarz mechanism.Comment: 18 pages, 1 figure, 3 table

    Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, SW France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements

    Get PDF
    This study highlights the role of interactions between surface and sub-surface water of the riparian zone of a large river (the Garonne, SW France). Information is given about the role of surface water in supplying Dissolved Organic Carbon (DOC ) to the riparian zone for nitrate removal processes. The densities of bacteria (up to 3.3106 cell m L-1) in groundwater are strongly conditioned by the water moving during flood events. Total bacterial densities in groundwater were related to surface water bacterial densities. In sediment, total bacteria are attached mainly to fine particles (90 % in the fraction < 1 mm). Spatial variations in organic carbon and nitrate content in groundwater at the site studied are correlated with exchanges between the groundwater and the river, from the upstream to the downstream part of the meander. Total bacterial densities, nitrate and decressing organic carbon concentrations follow the same pattern. These results suggest that, in this kind of riparian wetland, nitrate from alluvial groundwater influenced by agricultural practices may be denitrified by bacteria in the presence of organic carbon from river surface water

    Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases

    Get PDF
    Complex hierarchical structure governs emergent properties in biopolymeric materials; yet, the material processing involved remains poorly understood. Here, we investigated the multi-scale structure and composition of the mussel byssus cuticle before, during and after formation to gain insight into the processing of this hard, yet extensible metal cross-linked protein composite. Our findings reveal that the granular substructure crucial to the cuticle’s function as a wear-resistant coating of an extensible polymer fiber is pre-organized in condensed liquid phase secretory vesicles. These are phase-separated into DOPA-rich proto-granules enveloped in a sulfur-rich proto-matrix which fuses during secretion, forming the sub-structure of the cuticle. Metal ions are added subsequently in a site-specific way, with iron contained in the sulfur-rich matrix and vanadium coordinated by DOPA-catechol in the granule. We posit that this hierarchical structure self-organizes via phase separation of specific amphiphilic proteins within secretory vesicles, resulting in a meso-scale structuring that governs cuticle function

    Census of HII regions in NGC 6754 derived with MUSE: Constraints on the metal mixing scale

    Get PDF
    We present a study of the HII regions in the galaxy NGC 6754 from a two pointing mosaic comprising 197,637 individual spectra, using Integral Field Spectrocopy (IFS) recently acquired with the MUSE instrument during its Science Verification program. The data cover the entire galaxy out to ~2 effective radii (re ), sampling its morphological structures with unprecedented spatial resolution for a wide-field IFU. A complete census of the H ii regions limited by the atmospheric seeing conditions was derived, comprising 396 individual ionized sources. This is one of the largest and most complete catalogue of H ii regions with spectroscopic information in a single galaxy. We use this catalogue to derive the radial abundance gradient in this SBb galaxy, finding a negative gradient with a slope consistent with the characteristic value for disk galaxies recently reported. The large number of H ii regions allow us to estimate the typical mixing scale-length (rmix ~0.4 re ), which sets strong constraints on the proposed mechanisms for metal mixing in disk galaxies, like radial movements associated with bars and spiral arms, when comparing with simulations. We found evidence for an azimuthal variation of the oxygen abundance, that may be related with the radial migration. These results illustrate the unique capabilities of MUSE for the study of the enrichment mechanisms in Local Universe galaxies.Comment: 13 pages, 7 Figurs, accepted for publishing in A&
    • …
    corecore