4,705 research outputs found

    Dynamic analysis of the train-bridge interaction: an accurate and efficient numerical method

    Get PDF
    The dynamic behavior of railway bridges carrying high-speed trains can be analyzed with or without the consideration of the vehicle's own structure. However, due to the amount of kinetic energy carried at high speeds, the train may interact significantly with the bridge, especially when resonance occurs. Equally important is the riding comfort and the stability of the track and train cars, which are usually the most critical limit states in the design of this type of structures. With the aim of studying this problem a computer code was developed, being the interaction between the bridge and the train implemented by means of contact conditions between each train wheel (nodal point) and the structure (point inside a finite element). The treatment of the interaction between a train wheel and a point on the surface of a finite element is directly and efficiently implemented by means of an extended stiffness matrix, which includes stiffness, flexibility and additional terms that stem from the compatibility equations between the displacements of the vehicle and the bridge. This methodology was applied to the study of the dynamic behavior of a bowstring arch bridge and proved to be very accurate and efficien

    Development of an efficient finite element model for the dynamic analysis of the train-bridge interaction

    Get PDF
    The design of high-speed railway bridges comprises a set of demands, from safety and serviceability aspects, to new types of equipment and construction solutions. In order to perform an accurate and realistic evaluation of the corresponding dynamic behavior, adequate analysis tools that take into account the complexity of the train-bridge system are required. These computational tools must be based on efficient algorithms to allow for the completion of detailed dynamic analyses in a reasonable amount of time. The classical methods of analysis may be unsatisfactory in the evaluation of the dynamic effects of the train-bridge system and fully assessment of the structural safety, track safety and passenger comfort. A direct and versatile technique for the simulation of the train-bridge interaction was implemented in the FEMIX code, which is a general purpose finite element computer program. The presented case study is an application of the proposed formulation, which proved to be very accurate and efficient

    A nonlinear vehicle-structure interaction methodology with wheel-rail detachment and reattachment

    Get PDF
    . A vehicle-structure interaction methodology with a nonlinear contact formulation based on contact and target elements has been developed. To solve the dynamic equations of motion, an incremental formulation has been used due to the nonlinear nature of the contact mechanics, while a procedure based on the Lagrange multiplier method imposes the contact constraint equations when contact occurs. The system of nonlinear equations is solved by an efficient block factorization solver that reorders the system matrix and isolates the nonlinear terms that belong to the contact elements or to other nonlinear elements that may be incorporated in the model. Such procedure avoids multiple unnecessary factorizations of the linear terms during each Newton iteration, making the formulation efficient and computationally attractive. A numerical example has been carried out to validate the accuracy and efficiency of the present methodology. The obtained results have shown a good agreement with the results obtained with the commercial finite element software ANSY

    Phase synchronization of coupled bursting neurons and the generalized Kuramoto model

    Full text link
    Bursting neurons fire rapid sequences of action potential spikes followed by a quiescent period. The basic dynamical mechanism of bursting is the slow currents that modulate a fast spiking activity caused by rapid ionic currents. Minimal models of bursting neurons must include both effects. We considered one of these models and its relation with a generalized Kuramoto model, thanks to the definition of a geometrical phase for bursting and a corresponding frequency. We considered neuronal networks with different connection topologies and investigated the transition from a non-synchronized to a partially phase-synchronized state as the coupling strength is varied. The numerically determined critical coupling strength value for this transition to occur is compared with theoretical results valid for the generalized Kuramoto model.Comment: 31 pages, 5 figure

    Ideologies and Rhetoric

    Get PDF
    Brazil has had a distinctive definition of national and racial identity, and it has changed considerably over time, and at each time held out different possibilities for social mobility and citizenship. This paper traces changing relationship between black identities and citizenship through four periods in Brazilian history: abolition, black protests in the 1930s, postwar re- democratization and the democratic movement against the military dictatorship in the 1970s. It emphasizes how the complex intersection of nation, social relations, class and race has had profound effects on not only the categories used to label people, but also on the nuanced definition of the goal of efforts to overcome inequality

    Effects of dual-task interventions on gait performance of patients with parkinson’s disease: a systematic review

    Get PDF
    OBJECTIVE: Parkinson’s disease is characterized by motor and non-motor symptoms that impair patients’ gait performance, especially while performing dual/concurrent tasks. These deficits impair patients’ daily function, because dual-tasking is a crucial ability in terms of everyday living. The aim of this study was to systematically review the effects of dual task interventions on gait performance of patients with Parkinson’s disease. METHOD: Studies were retrieved from MEDLINE/PubMed, LILACS and SciELO. We used the PICOS strategy to determine eligibility criteria. The search strategy included an advanced search on the included databases, using the following search query: “Parkinson’s Disease” AND “Double Task” OR “Concurrent Tasks” OR “Gait” AND “Walk”. Study selection was carried out by two independent researchers and a third one was called when consensus was needed. RESULTS: A total of 188 articles were identified: 169 articles from Medline/PubMed, 10 articles in SciELO, 8 articles in LILACS and 1 item from manual searches. A total of 56 articles were analyzed regarding the eligibility and exclusion criteria based on full text. A final total of 7 studies were included in the systematic review. CONCLUSION: The different types of dual-task interventions reported (dance, sound stimuli, visual and somatosensory) were associated to improvements in several gait performance indicators of Parkinson’s disease patients, including gait speed, stride time and length, cadence and step length. External stimuli seem to play a critical role on specific training effects on dual-task gait performance.info:eu-repo/semantics/publishedVersio
    • …
    corecore