7,183 research outputs found

    Virtual cluster scheduling through the scheduling graph

    Get PDF
    This paper presents an instruction scheduling and cluster assignment approach for clustered processors. The proposed technique makes use of a novel representation named the scheduling graph which describes all possible schedules. A powerful deduction process is applied to this graph, reducing at each step the set of possible schedules. In contrast to traditional list scheduling techniques, the proposed scheme tries to establish relations among instructions rather than assigning each instruction to a particular cycle. The main advantage is that wrong or poor schedules can be anticipated and discarded earlier. In addition, cluster assignment of instructions is performed using another novel concept called virtual clusters, which define sets of instructions that must execute in the same cluster. These clusters are managed during the deduction process to identify incompatibilities among instructions. The mapping of virtual to physical clusters is postponed until the scheduling of the instructions has finalized. The advantages this novel approach features include: (1) accurate scheduling information when assigning, and, (2) accurate information of the cluster assignment constraints imposed by scheduling decisions. We have implemented and evaluated the proposed scheme with superblocks extracted from Speclnt95 and MediaBench. The results show that this approach produces better schedules than the previous state-of-the-art. Speed-ups are up to 15%, with average speed-ups ranging from 2.5% (2-Clusters) to 9.5% (4-Clusters).Peer ReviewedPostprint (published version

    A unified modulo scheduling and register allocation technique for clustered processors

    Get PDF
    This work presents a modulo scheduling framework for clustered ILP processors that integrates the cluster assignment, instruction scheduling and register allocation steps in a single phase. This unified approach is more effective than traditional approaches based on sequentially performing some (or all) of the three steps, since it allows optimizing the global code generation problem instead of searching for optimal solutions to each individual step. Besides, it avoids the iterative nature of traditional approaches, which require repeated applications of the three steps until a valid solution is found. The proposed framework includes a mechanism to insert spill code on-the-fly and heuristics to evaluate the quality of partial schedules considering simultaneously inter-cluster communications, memory pressure and register pressure. Transformations that allow trading pressure on a type of resource for another resource are also included. We show that the proposed technique outperforms previously proposed techniques. For instance, the average speed-up for the SPECfp95 is 36% for a 4-cluster configuration.Peer ReviewedPostprint (published version

    Cardiac damage biomarkers and heart rate variability following a 118-km mountain race: relationship with performance and recovery

    Get PDF
    This study aimed to assess the release of cardiac damage biomarkers jointly with cardiac autonomic modulation after a mountain ultramarathon. Such knowledge and the possible relationship of these markers with race time is of primary interest to establish possible recommendations upon athletes’ recovery and return to training following these competitions. Forty six athletes enrolled in the Penyagolosa Trails CSP115 race (118 km and a total positive elevation of 5439 m) took part in the study. N-terminal pro-brain natriuretic peptide (NT-proBNP) and high-sensitive cardiac troponin T (hs-TNT) concentrations as well as linear and nonlinear heart rate variability (HRV) were evaluated before and after the race. NT-proBNP and hs-TNT significantly increased post-race; fifty percent of the finishers surpassed the Upper Reference Limit (URL) for hs-TNT while 87% exceeded the URL for NT-proBNP. Overall and vagally-mediated HRV were diminished and cardiac autonomic modulation became less complex and more predictable following the race. More pronounced vagal modulation decreases were associated with higher levels of postexertional NT-proBNP. Moreover, rise in hs-TNT and NT-proBNP was greater among faster runners, while pre-race overall and vagally-mediated HRV were correlated with finishing time. Participation in a 118-km ultratrail induces an acute release of cardiac damage biomarkers and a large alteration of cardiac autonomic modulation. Furthermore, faster runners were those who exhibited a greater rise in those cardiac damage biomarkers. In light of these findings, an appropriate recovery period after ultraendurance races appears prudent and particularly important among better performing athletes. At the same time, HRV analysis is shown as a promising tool to assess athletes’ readiness to perform at their maximum level in an ultraendurance race

    On naturally graded Lie and Leibniz superalgebras

    Full text link
    In general, the study of gradations has always represented a cornerstone in algebra theory. In particular, \textit{naturally graded} seems to be the first and the most relevant gradation when it comes to nilpotent algebras, a large class of solvable ones. In fact, many families of relevant solvable algebras have been obtained by extensions of naturally graded nilpotent algebras, i.e. solvable algebras with a well-structured nilradical. Thus, the aim of this work is introducing the concept of naturally graded for superalgebra structures such as Lie and (non-Lie) Leibniz. After having defined naturally graded Lie and Leibniz superalgebras, we characterize natural gradations on a very important class of each of them, that is, those with maximal super-nilindex

    Spatial Adaptive Speckle Filtering Driven by Temporal Polarimetric Statistics and Its Application to PSI

    Get PDF
    Persistent scatterer (PS) interferometry (PSI) techniques are designed to measure ground deformations using satellite synthetic aperture radar (SAR) data. They rely on the identification of pixels not severely affected by spatial or temporal decorrelation, which, in general, correspond to pointlike PSs commonly found in urban areas. However, in urban areas, we can find not only PSs but also distributed scatterers (DSs) whose phase information may be exploited for PSI applications. Estimation of DS parameters requires speckle filtering to be applied to the complex SAR data, but conventional speckle filtering approaches tend to mask PS information due to spatial averaging. In the context of single-polarization PSI, adaptive speckle filtering strategies based on the exploitation of amplitude temporal statistics have been proposed, which seek to avoid spatial filtering on nonhomogeneous areas. Given the growing interest on polarimetric PSI techniques, i.e., those using polarimetric diversity to increase performance over conventional single-polarization PSI, in this paper, we propose an adaptive spatial filter driven by polarimetric temporal statistics, rather than single-polarization amplitudes. The proposed approach is able to filter DS while preserving PS information. In addition, a new methodology for the joint processing of PS and DS in the context of PSI is introduced. The technique has been tested for two different urban data sets: 41 dual-polarization TerraSAR-X images of Murcia (Spain) and 31 full-polarization Radarsat-2 images of Barcelona (Spain). Results show an important improvement in terms of number of pixels with valid deformation information, hence denser area coverage.This work was supported in part by the Spanish Ministerio de Economía y Competitividad and in part by the European Union FEDER funds under Project TEC2011-28201-C02-02

    On the validity of the 630 nm Fe I nm lines for the magnetometry of the internetwork quiet Sun

    Full text link
    The purpose of this work is to analyze the reliability of the magnetic field strengths inferred from the 630 nm pair of Fe I lines at internetwork quiet Sun regions. Some numerical experiments have been performed that demonstrate the inability of these lines to recover the magnetic field strength in such low flux solar regions. It is shown how different model atmospheres, with magnetic field strengths ranging from few hundred Gauss to kiloGauss, give rise to Stokes profiles that can not be distinguished. The reasons for this degeneracy are discussed.Comment: Accepted for publication in A&

    ¿Cuál es su diagnóstico y tratamiento?

    Get PDF

    Sialoectasia crónica del conducto de Stenon: a propósito de un caso

    Get PDF

    Odd-quadratic Lie superalgebras with a weak filiform module as an odd part

    Full text link
    The aim of this work is to study a very special family of odd-quadratic Lie superalgebras g=g0ˉg1ˉ{\mathfrak g}={\mathfrak g}_{\bar 0}\oplus {\mathfrak g}_{\bar 1} such that g1ˉ{\mathfrak g}_{\bar 1} is a weak filiform g0ˉ{\mathfrak g}_{\bar 0}-module (weak filiform type). We introduce this concept after having proved that the unique non-zero odd-quadratic Lie superalgebra (g,B)({\mathfrak g},B) with g1ˉ{\mathfrak g}_{\bar 1} a filiform g0ˉ{\mathfrak g}_{\bar 0}-module is the abelian 22-dimensional Lie superalgebra g=g0ˉg1ˉ{\mathfrak g}={\mathfrak g}_{\bar 0} \oplus {\mathfrak g}_{\bar 1} such that \mbox{{\rm dim }}{\mathfrak g}_{\bar 0}=\mbox{{\rm dim }}{\mathfrak g}_{\bar 1}=1. Let us note that in this context the role of the center of g{\mathfrak g} is crucial. Thus, we obtain an inductive description of odd-quadratic Lie superalgebras of weak filiform type via generalized odd double extensions. Moreover, we obtain the classification, up to isomorphism, for the smallest possible dimensions, that is, six and eight

    Evidence of strong antiferromagnetic coupling between localized and itinerant electrons in ferromagnetic Sr2FeMoO6

    Full text link
    Magnetic dc susceptibility (χ\chi) and electron spin resonance (ESR) measurements in the paramagnetic regime, are presented. We found a Curie-Weiss (CW) behavior for χ\chi(T) with a ferromagnetic Θ=446(5)\Theta = 446(5) K and μeff=4.72(9)μB/f.u.\mu_{eff} = 4.72(9) \mu_{B}/f.u., this being lower than that expected for either Fe3+(5.9μB)Fe^{3+}(5.9\mu_{B}) or Fe2+(4.9μB)Fe^{2+}(4.9\mu_{B}) ions. The ESR g-factor g=2.01(2)g = 2.01(2), is associated with Fe3+Fe^{3+}. We obtained an excellent description of the experiments in terms of two interacting sublattices: the localized Fe3+Fe^{3+} (3d53d^{5}) cores and the delocalized electrons. The coupled equations were solved in a mean-field approximation, assuming for the itinerant electrons a bare susceptibility independent on TT. We obtained χe0=3.7\chi_{e}^{0} = 3.7 10410^{-4} emu/mol. We show that the reduction of μeff\mu_{eff} for Fe3+Fe^{3+} arises from the strong antiferromagnetic (AFM) interaction between the two sublattices. At variance with classical ferrimagnets, we found that Θ\Theta is ferromagnetic. Within the same model, we show that the ESR spectrum can be described by Bloch-Hasegawa type equations. Bottleneck is evidenced by the absence of a gg-shift. Surprisingly, as observed in CMR manganites, no narrowing effects of the ESR linewidth is detected in spite of the presence of the strong magnetic coupling. These results provide evidence that the magnetic order in Sr2FeMoO6Sr_{2}FeMoO_{6} does not originates in superexchange interactions, but from a novel mechanism recently proposed for double perovskites
    corecore