3 research outputs found

    Sexual stages of the female portion in the scallop Nodipecten nodosus (Linn\ue9, 1758) and astaxanthin quantity in each stage

    No full text
    This work describes the gametogenic cycle of the scallop Nodipecten nodosus kept in a culture system. To this end, during one year, samples were taken from the broodstocks every 30 days to be submitted to macroscopic and microscopic analyses and to measure the amount of astaxanthin. To perform the microscopic evaluation, 5 μ slices from the median portion of the female part of the gonad were submitted to the pattern methodology for histological analyses with paraffin and HE coloration. The remaining portion of the female gonad was lyophilised to extract and quantify the levels of astaxanthin using HPLC. The microscopic analyses revealed four well defined stages for the reproductive cycle. Analyses of data taken throughout the year indicated preferential spawning periods from December to January and from July to September. The astaxanthin analyses showed higher amounts of this carotenoid during the advanced pre-spawning and the initial spawning periods than during gametogenesis, initial pre-spawning, advanced spawning, and the spent stages. According to these results, it was possible to establish a descriptive table of the sexual stages of the female portion of the gonad and the amount of astaxanthin in the sexual stage of the scallop Nodipecten nodosus

    Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3

    No full text
    Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements

    Maps of open chromatin highlight cell type-restricted patterns of regulatory sequence variation at hematological trait loci

    Get PDF
    <p>Nearly three-quarters of the 143 genetic signals associated with platelet and erythrocyte phenotypes identified by meta-analyses of genome-wide association (GWA) studies are located at non-protein-coding regions. Here, we assessed the role of candidate regulatory variants associated with cell type-restricted, closely related hematological quantitative traits in biologically relevant hematopoietic cell types. We used formaldehyde-assisted isolation of regulatory elements followed by next-generation sequencing (FAIRE-seq) to map regions of open chromatin in three primary human blood cells of the myeloid lineage. In the precursors of platelets and erythrocytes, as well as in monocytes, we found that open chromatin signatures reflect the corresponding hematopoietic lineages of the studied cell types and associate with the cell type-specific gene expression patterns. Dependent on their signal strength, open chromatin regions showed correlation with promoter and enhancer histone marks, distance to the transcription start site, and ontology classes of nearby genes. Cell type-restricted regions of open chromatin were enriched in sequence variants associated with hematological indices. The majority (63.6%) of such candidate functional variants at platelet quantitative trait loci (QTLs) coincided with binding sites of five transcription factors key in regulating megakaryopoiesis. We experimentally tested 13 candidate regulatory variants at 10 platelet QTLs and found that 10 (76.9%) affected protein binding, suggesting that this is a frequent mechanism by which regulatory variants influence quantitative trait levels. Our findings demonstrate that combining large-scale GWA data with open chromatin profiles of relevant cell types can be a powerful means of dissecting the genetic architecture of closely related quantitative traits.</p>
    corecore