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Maps of open chromatin highlight cell type–restricted
patterns of regulatory sequence variation
at hematological trait loci
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Nearly three-quarters of the 143 genetic signals associated with platelet and erythrocyte phenotypes identified by meta-
analyses of genome-wide association (GWA) studies are located at non-protein-coding regions. Here, we assessed the role
of candidate regulatory variants associated with cell type–restricted, closely related hematological quantitative traits in
biologically relevant hematopoietic cell types. We used formaldehyde-assisted isolation of regulatory elements followed
by next-generation sequencing (FAIRE-seq) to map regions of open chromatin in three primary human blood cells of the
myeloid lineage. In the precursors of platelets and erythrocytes, as well as in monocytes, we found that open chromatin
signatures reflect the corresponding hematopoietic lineages of the studied cell types and associate with the cell type–
specific gene expression patterns. Dependent on their signal strength, open chromatin regions showed correlation with
promoter and enhancer histone marks, distance to the transcription start site, and ontology classes of nearby genes. Cell
type–restricted regions of open chromatin were enriched in sequence variants associated with hematological indices. The
majority (63.6%) of such candidate functional variants at platelet quantitative trait loci (QTLs) coincided with binding
sites of five transcription factors key in regulating megakaryopoiesis. We experimentally tested 13 candidate regulatory
variants at 10 platelet QTLs and found that 10 (76.9%) affected protein binding, suggesting that this is a frequent
mechanism by which regulatory variants influence quantitative trait levels. Our findings demonstrate that combining
large-scale GWA data with open chromatin profiles of relevant cell types can be a powerful means of dissecting the genetic
architecture of closely related quantitative traits.

[Supplemental Material is available for this article.]

Genome-wide association (GWA) studies have discovered many

non-protein-coding loci associated with complex traits. The pre-

cise localization of the causative sequence variant(s) at GWA loci is

often impeded due to the extent of high linkage disequilibrium

(LD), even when fine-mapping data are available. In addition, the

functional impact of noncoding sequence variants at the molec-

ular level is difficult to evaluate (Donnelly 2008; McCarthy et al.

2008; Cooper and Shendure 2011). Recent studies have shown that

a large proportion of GWA signals are located within active gene

regulatory elements in selected cell lines and primary tissues (The

ENCODE Project Consortium 2012; Maurano et al. 2012). The

ENCODE Project Consortium (2012) mapped deoxyribonuclease I

(DNase I) hypersensitive and transcription factor binding sites in

147 cell types, and found that 34% and 12%, respectively, of GWA

lead SNPs overlapped with these regulatory regions. Maurano et al.

(2012) expanded the catalog of DNase I hypersensitive sites to 349

cell types (including 85 ENCODE cell types), and showed that 57%

of GWA lead SNPs were located within these regulatory sites. Ad-

ditional candidate functional variants were retrieved by consider-

ing proxy SNPs that are in high LD with the lead SNP. Despite the

ambitious scale of ENCODE and related efforts, biologically rele-

vant effector (primary) cell types have not yet been assayed for

many traits.
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We recently demonstrated that the formaldehyde-assisted

isolation of regulatory elements (FAIRE) technique is a valuable

tool in mapping nucleosome-depleted regions (NDRs) at selected

genetic loci associated with hematological traits, and in prioritiz-

ing candidate variants for experimental validation (Paul et al.

2011). Hematological traits, such as the count and volume of cells

in peripheral blood and the hemoglobin content of erythrocytes,

are under genetic control and vary extensively between individuals

(Evans et al. 1999; Garner et al. 2000). Such traits offer an excellent

means of investigating the genetic architecture of closely related

complex traits, because the cellular components of the hemato-

poietic system are well understood and primary precursor cells can

be relatively easily accessed for experimental assays.

In this work, we used FAIRE-seq to map NDRs genome-wide in

primary human megakaryocytes (MKs) and erythroblasts (EBs),

the precursor cells of platelets and erythrocytes, respectively, as

well as in monocytes (MOs). We also mapped NDRs in two im-

mortalized cell lines commonly used as models for MKs and EBs,

i.e., CHRF-288-11 and K562, respectively. First, we characterize the

open chromatin profiles with respect to hematopoietic cell type

and lineage, as well as FAIRE signal strength. Second, we assess the

cell type–dependent enrichment patterns of sequence variants

associated with two platelet and six erythrocyte indices at NDRs,

using the results from the largest GWA meta-analyses conducted so

far for these traits (Gieger et al. 2011; van der Harst et al. 2012). For

these analyses, we also consider unrelated quantitative traits, i.e.,

fasting glucose (FG) and insulin (FI) levels, body mass index (BMI),

and height (Dupuis et al. 2010; Lango Allen et al. 2010; Speliotes

et al. 2010), as well as an open chromatin data set in a non-

hematopoietic cell type, i.e., pancreatic islets (Gaulton et al. 2010).

Finally, we experimentally validate a set of candidate regulatory

variants identified within NDRs at platelet quantitative trait loci

(QTLs).

Results

Preparation of open chromatin profiles of human myeloid cells

Cord blood–derived CD34+ hematopoietic progenitor cells (HPCs)

from two unrelated individuals were differentiated in vitro into

either MKs in the presence of thrombopoietin and interleukin-1b,

or into EBs in the presence of erythropoietin, interleukin-3, and

KIT ligand (also known as stem cell factor). MOs were purified from

peripheral blood from another two individuals (Supplemental Fig.

1A–C). In addition, we prepared FAIRE samples from CHRF-288-11

megakaryocytic cells and retrieved publicly available FAIRE-seq data

for K562 erythroblastoid cells and pancreatic islets (Gaulton et al.

2010; The ENCODE Project Consortium 2012). Figure 1 gives an

overview of the study design. All FAIRE-seq data sets were processed

in a standardized manner, as described in the Methods section.

We determined FAIRE-derived NDRs (peaks) using a Gaussian

kernel density estimator implemented in the software F-Seq (Sup-

plemental Tables 1, 2; Boyle et al. 2008). As the Illumina DNA se-

quencing platform provides a large dynamic range and high sensi-

tivity using discrete, digital sequencing read counts, we hypothesized

that a subclassification of FAIRE peaks based on signal strength

may allow more precise downstream functional analyses. Therefore,

we stratified the peaks according to their signal strength (F-Seq peak

score) into four equally spaced intensity bins, termed ‘‘Bins 1–4’’

(Supplemental Table 3).

The reproducibility of the peak calls across biological repli-

cates in CHRF-288-11 and K562 cell lines increased with signal

strength and was consistently >80% for peaks in the top three in-

tensity bins, i.e., Bins 2–4. In contrast, we observed limited re-

producibility (<50%) of the peaks in the lowest intensity bin, i.e.,

Bin 1 (Supplemental Fig. 2A–K; Supplemental Table 4A). Further-

more, the fraction of overlap between peaks in Bin 1 and other

regulatory marks (H3K4me1/3 histone modifications and tran-

scription factor binding sites) was small compared with that of

peaks in Bins 2–4 (Supplemental Table 4B); i.e., the overlap of

FAIRE peaks with transcription factor binding sites in MKs was 4%

in Bin 1 and on average 50% across Bins 2–4. Thus, we excluded

peaks in Bin 1 from subsequent analyses, as a large fraction of its

peaks were neither reproducible nor appeared to bear hallmarks of

regulatory chromatin.

Hematopoietic cell type–restricted and lineage-restricted open
chromatin signatures

We first investigated to what extent individual myeloid cell types

have distinct open chromatin signatures. We constructed distance

matrices based on the overlap of NDRs across all sampled cell types

(Supplemental Fig. 2A–K) and assessed the uncertainty of the

clustering using bootstrap resampling (Suzuki and Shimodaira

2006).

We found that the hierarchical clustering is dominated by cell

type identity rather than interindividual variation (Fig. 2A). The

observed hierarchical tree branches reflected the established re-

lation of the myeloid hematopoietic lineages. For example, MKs

and EBs were found to cluster together, reflecting that the two cell

types share a common progenitor, termed the MK-erythroid pro-

genitor. MOs did not co-cluster with MKs/EBs and formed an out-

group, corresponding to the split of the common myeloid pro-

genitor into the MK-erythroid and granulocyte-macrophage line-

ages. As expected, pancreatic islets formed another out-group

(Supplemental Fig. 2K) due to the limited overlap between NDRs

from endoderm-derived pancreatic islets and from mesoderm-de-

rived hematopoietic cells. The difference in clustering between

Figure 1. Overview of the study design. Cord blood–derived CD34+

hematopoietic progenitor cells from two unrelated individuals were dif-
ferentiated in vitro into either megakaryocytes (MKs) or erythroblasts
(EBs). Monocytes (MOs) were purified from peripheral blood from an-
other two individuals. We also prepared FAIRE samples from CHRF-288-11
megakaryocytic cells. In addition, we retrieved publicly available FAIRE-
seq data sets for K562 erythroblastoid cells and pancreatic islets from The
ENCODE Project Consortium (2012) and Gaulton et al. (2010), respec-
tively, and reanalyzed the data sets in concordance with all other FAIRE
data sets. (HSC) Hematopoietic stem cell; (TPO) thrombopoietin; (IL1B)
interleukin 1, beta; (EPO) erythropoietin; (KITLG) KIT ligand (also known
as SCF, or stem cell factor); (IL3) interleukin-3.
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MOs and pancreatic islets as out-groups was marginal, based on

their small number of shared NDRs across cell types (Supplemental

Fig. 3). These data suggest that globally, the open chromatin sig-

nature of MOs is as unrelated to MKs/EBs as pancreatic islets, and

indicate clear differences in chromatin profiles even within related

hematopoietic cells of the same myeloid lineage.

We then compared the open chromatin profiles of MKs and

EBs with that of CHRF-288-11 and K562 cells, respectively. The two

investigated immortalized lines clustered closer to each other than

to their respective primary cell type (CHRF-288-11/MKs and K562/

EBs), suggesting differences in open chromatin structure between

immortalized lines and that of primary cells (Fig. 2A,B). For ex-

ample, although there was extensive overlap between NDRs found

in MKs and CHRF-288-11 cells (Supplemental Fig. 2A,B), the latter

cell type possessed a large number of additional NDRs that over-

lapped with K562 cells but not with MKs (Supplemental Fig. 2G,H).

Hematopoietic lineage-restricted gene expression patterns

Next, we examined if the identified NDRs mark lineage-specific

elements involved in regulation of expression of genes relevant to

blood cell lineage commitment. For each cell type, we pooled the

sequence fragments of the two individual FAIRE preparations and

processed the data as for the individual preparations described

above. We then assessed the expression levels of the single closest

gene (defined as in terms of the distance to its transcription start

site [TSS]) to each cell type–restricted NDR, interrogated over sev-

eral time points during in vitro differentiation of HPCs into MKs

(Supplemental Table 5A) and EBs (Supplemental Table 5B).

Transcripts close to MK-restricted NDRs (i.e., NDRs found

only in MKs but not in the other cell types assayed) were more

likely to be up-regulated during MK differentiation relative to all

expressed transcripts (1.41-fold enrichment; P = 1.00 3 10�29, two-

tailed x2 test). We observed the same effect directionality for

transcripts close to EB-restricted NDRs during EB differentiation

(1.50; P = 1.23 3 10�59). Transcripts close to MO-restricted NDRs

were down-regulated during both MK and EB differentiation with

a fold change of 0.91 (P = 3.62 3 10�9) and 0.85 (P = 1.23 3 10�19),

respectively.

Interestingly, transcripts in proximity to NDRs shared be-

tween MKs and MOs were also up-regulated during MK differen-

tiation (1.19; P = 1.13 3 10�5). The corresponding genes (n = 265)

mostly encode signaling proteins downstream from integrins, cy-

tokine receptors, and G protein–coupled receptors that are

expressed in both MKs and MOs. We annotated the gene set using

the Ingenuity Knowledge Base and found an enrichment of genes

in the canonical pathways ‘‘Fcg receptor-mediated phagocytosis in

macrophages and monocytes’’ (P = 4.53 3 10�4, Benjamini-

Hochberg corrected for multiple testing; n = 10 genes) and

‘‘integrin signaling’’ (P = 4.53 3 10�4, n = 14). We suggest that the

265 genes may also include a subset of coexpressed genes in MKs

and MOs that play a role in the molecular events that link cell

surface growth factor receptors to platelet integrin activation.

Functional classification of NDRs based on signal strength

We then investigated whether NDRs of different signal strength

have different functional properties: in particular, their distance to

the TSS, correlation with promoter and enhancer histone marks,

and ontology classes of nearby genes.

First, we examined the location of NDRs of different signal

strength relative to the TSS. We observed that for both MKs and EBs

but not for MOs, NDRs in the lowest retained intensity bin (Bin 2;

Supplemental Fig. 4A) were less often located close to the TSS than

NDRs in the highest intensity bin (Bin 4; Supplemental Fig. 4B).

We further investigated these observations by performing chromatin

immunoprecipitation (ChIP) combined with high-throughput

next-generation sequencing (ChIP-seq) of the histone modifica-

tions H3K4me3 and H3K4me1, which mark active promoters and

enhancers, respectively. In MKs and EBs, NDRs in the highest in-

Figure 2. Hierarchical clustering of the overlap of FAIRE-derived nucleosome-depleted regions (NDRs). (A) The hierarchical clustering is based on the
overlap of NDRs across different cell types, as shown in Supplemental Figure 2. The dendrogram shows that the clustering is dominated by cell type
identity rather than individual preparation. The observed hierarchical tree mirrors the hematopoietic tree, where MKs and EBs share a common progenitor.
MKs and EBs do not co-cluster with their representative cell lines, i.e., CHRF-288-11 and K562, respectively, indicating that the open chromatin structure of
immortalized lines does not fully reflect that of primary cells. Both MOs and pancreatic islets form out-groups, due to the limited overlap of NDRs with the
other cell types tested. This suggests that MOs, despite being one of the myeloid types of cells akin to MKs and EBs, have a marked different open
chromatin profile. The hierarchical cluster analysis was performed using the R package Pvclust (distance: binary; cluster method: complete) (Suzuki and
Shimodaira 2006). The uncertainty of the clustering was assessed using bootstrap resampling. (B) The heatmap of the binary distances complements the
cluster plot. Relationships between NDRs across all samples are observable. The binary distances were plotted using the levelplot function of the R package
lattice (http://cran.r-project.org/web/packages/lattice/). (MO) Monocyte; (MK) megakaryocyte; (EB) erythroblast; (ISL) pancreatic islet; (CHRF) CHRF-
228-11 megakaryocytic cell; (K562) K562 erythroblastoid cell; (au) approximately unbiased P-value; (bp) bootstrap probability value.
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tensity bin showed stronger overlap with promoters proximal to

TSSs compared with NDRs at the other extreme, which showed

stronger overlap with enhancers distal to TSSs (Fig. 3A,B). NDRs

that did not overlap with either histone mark were more likely to

be in the lowest intensity bin and located far from promoters. In

contrast, we found that NDRs in the highest intensity bin in

MOs were depleted close to the TSS compared with MKs and EBs

(Fig. 3C).

Second, we applied the Genomic Regions Enrichment of

Annotations Tool (GREAT) (McLean et al. 2010) to aid the func-

tional interpretation of NDRs of different signal strength by ana-

lyzing the annotations of the single closest flanking gene (Sup-

plemental Table 6). In MKs and EBs, NDRs in the lowest intensity

bin were enriched in cell type–specific genes, while NDRs in the

highest intensity bin were enriched in housekeeping genes.

However, in MOs we observed an enrichment of cell type–specific

gene sets close to NDRs irrespective of their signal strength. One

possible explanation for the lack of enrichment in housekeeping

genes could be that mature MOs, as studied here, do not proliferate

but rather differentiate into various macrophage classes upon

stimulation (Geissmann et al. 2010).

Cell type–dependent enrichment of genome-wide significant
SNPs associated with hematological traits at NDRs

We assessed the enrichment of genome-wide significant SNPs

associated with platelet and erythrocyte phenotypes at NDRs

in a cell type–dependent context. We retrieved proxy SNPs (r2 >

0.8) (The 1000 Genomes Project Consortium 2010) of all GWA

lead SNPs (P < 5 3 10�8) at 68 platelet and 75 erythrocyte QTLs

(Gieger et al. 2011; van der Harst et al. 2012). By use of these

criteria, we obtained 1680 and 4632 SNPs at platelet and eryth-

rocyte QTLs, respectively. Then, we intersected the SNP posi-

tions with the composite map of open chromatin in myeloid cell

types.

At 18 (26.5%) and 25 (33.3%) of the platelet and erythrocyte

QTLs, respectively, we found at least one trait-associated SNP lo-

cated within an NDR across MKs, EBs, and MOs (Fig. 4A,B; Sup-

plemental Table 7A–D). Next, we compared the extent of overlap

with 100,000 random sets of 68 and 75 SNPs that were matched

for possible confounding factors such as minor allele frequency

(MAF), distance to a TSS, and number of proxy SNPs per locus

(Methods). At platelet QTLs, significant overlap with NDRs in MKs

(P = 2.0 3 10�5) and MOs (P = 1.7 3 10�3) was observed. The extent

of overlap with NDRs in EBs was not more than expected by

chance when compared to random sets of SNPs (Fig. 4C). At

erythrocyte QTLs, we found significant (P < 1 3 10�5) overlap with

NDRs in EBs, but not with NDRs in MKs or MOs (Fig. 4D). At both

platelet and erythrocyte QTLs, there was no significant enrich-

ment of GWA signals at NDRs in pancreatic islets.

Compared with immortalized cell lines representative of MKs

and EBs, the same trends of enrichment as for the primary cell

types were observed in platelet and erythrocyte traits, respectively.

However, NDRs identified in CHRF-288-11 cells were also enriched

for SNPs associated with erythrocyte indices (Fig. 4D). This is

consistent with the notion that CHRF-288-11 cells are immature

and therefore more closely related to MK-erythroid progenitor cells

(Nürnberg et al. 2012), and is in agreement with the extensive

overlap we found between NDRs in CHRF-288-11 and K562 cells

(Supplemental Fig. 2G–J).

The NDRs overlapping platelet trait-associated SNPs were

more likely to be restricted to MKs than expected by chance (P =

2.83 3 10�4, Bonferroni-adjusted binomial test) (Fig. 5A; Supple-

mental Table 8A). We observed the same cell type–dependent ef-

fect for erythrocyte trait-associated SNPs at EB-restricted NDRs (P =

4.62 3 10�7) (Fig. 5B; Supplemental Table 8B). These results suggest

that regulatory variation may underlie the association signals ob-

served at several of the genetic loci identified in hematological trait

GWA studies. Importantly, the cell type corresponding to the he-

matological trait may play a pivotal role in the genetic architecture

of the complex trait.

We further validated the statistical enrichment (Fig. 4C,D) by

estimating the fold change of the number of GWA signals over-

lapping NDRs, relative to random sets of SNPs (Supplemental Fig.

5A,B). Despite the statistical enrichment and strong fold enrich-

ment in relevant cell types, it is important to note that about half

of the observed overlaps between candidate SNPs and NDRs are

expected by chance (Supplemental Fig. 5A,B). Taken together, our

findings suggest that the intersection of trait-associated SNPs with

NDRs, and particularly for NDRs identified in relevant tissues, is

likely to provide an informative ranking for selection of candidate

causative variants for experimental validation.

Figure 3. Overlap of H3K4me3 (promoter) and H3K4me1 (enhancer) histone marks with NDRs. In (A) MKs and (B) EBs, NDRs in the highest intensity
bin (Bin 4) showed stronger overlap with gene promoters close to TSSs compared with NDRs in the lowest retained intensity bin (Bin 2), which showed
stronger overlap with enhancer elements distal to the closest TSS. NDRs that did not overlap with histone marks were more likely to be in the lowest
intensity bin and far from promoters. (C ) In MOs, however, we found that NDRs in the highest intensity bin were depleted close to the TSS compared with
MKs and EBs. The peak bins are indicated with a dashed gray line. These results suggest that NDRs of different signal strength may have different functional
properties.

Open chromatin and hematological traits

Genome Research 1133
www.genome.org

 Cold Spring Harbor Laboratory Press on August 6, 2014 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Identification of candidate functional variants at platelet QTLs

To provide evidence that the SNPs we identified using the above ap-

proach are indeed valid functional candidates, we performed elec-

trophoretic mobility shift assays (EMSAs). Here, we define ‘‘candidate

functional variant’’ as a variant that affects DNA–protein binding,

a possible mechanism for causality at non-protein-coding regions. We

tested 13 functional candidates at 10 of the 18 identified platelet QTLs

(Supplemental Table 9). These 13 selected SNPs were located within 11

NDRs that were present in both MKs and CHRF-288-11 megakaryo-

cytic cells. Specifically, we identified two NDRs at the PTGES3-BAZ2A

GWA locus, while the NDRs at the FAR2 and DNM3 loci each con-

tained two candidate SNPs (Table 1). Importantly, seven of these 11

NDRs also coincided with binding sites of transcription factors key in

regulating megakaryopoiesis (Tijssen et al. 2011), i.e., FLI1, GATA1,

GATA2, RUNX1, and TAL1 (also known as SCL), suggesting identifi-

cation of physiologically relevant regulatory elements.

For 10 of the 13 tested SNPs, we observed by visual inspection

of the EMSA blot, differential binding of nuclear proteins between

alleles in CHRF-288-11 cells (Supplemental Figs. 6A,B,E–I,N,O, 7B).

For the three remaining SNPs, we observed comparable protein

binding between allelic probes (Supplemental Fig. 6K–M).

We then annotated the candidate SNPs using RegulomeDB,

a database containing known and predicted regulatory elements in

the human genome (Boyle et al. 2012), and found all but one SNP

to coincide with at least one RegulomeDB feature. Table 1 sum-

marizes the obtained functional evidence for the platelet candidate

variants.

As an example, the platelet count-associated SNP rs4148450

was located at an MK-restricted intronic NDR of ABCC4. The open

chromatin region coincided with a RUNX1 transcription factor

binding site in MKs (Supplemental Fig. 7A). ABCC4 encodes the

ATP-binding cassette protein ABCC4, also known as multidrug

resistance protein 4 (MRP4). Several studies indicated that ABCC4

is involved in the accumulation of the platelet-activating signaling

molecule adenosine diphosphate (ADP) in platelet-dense granules

( Jedlitschky et al. 2004, 2010). Our data suggest the noncoding

SNP rs4148450 to be the functional variant at the 13q32.1 platelet

Figure 4. Cell type–dependent enrichment of GWA signals associated with hematological quantitative traits at NDRs. (A,B) Cumulative number of GWA
loci harboring platelet (A) and erythrocyte (B) trait-associated SNPs at NDRs across different cell types as a function of rank tranches for decreasing NDR
signal strength (F-Seq peak score). (C,D) To determine whether such overlap was expected by chance, we compared the number of overlapping SNPs with
100,000 random samples of 68 and 75 SNPs at the platelet (C ) and erythrocyte (D) QTLs, respectively. These random sets of SNPs were matched for
possible confounding factors such as minor allele frequency, distance to a TSS, and number of proxy SNPs per locus. The achieved significance level is
displayed across the cumulative rank tranches to better appreciate the effect of increasing the number of NDRs in the analysis. The strongest enrichment of
genome-wide significant sequence variants at platelet and erythrocyte QTLs was found at NDRs in MKs and EBs, respectively. However, the enrichment
was equally clear at NDRs in the respective immortalized lines, i.e., CHRF-288-11 megakaryocytic cells and K562 erythroblastoid cells, respectively. NDRs
identified in CHRF-288-11 cells but not MKs were enriched for SNPs associated with erythrocyte indices, indicative of the less differentiated state of cell
lines of leukemic origin relative to the primary cells.
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count locus. As a further example, we recently described the mo-

lecular mechanism underlying the DNM3 platelet count and vol-

ume locus (Nürnberg et al. 2012). In brief, the SNP rs2038479 was

located at intron 2 of DNM3, which encodes Dynamin 3, a mech-

anochemical enzyme involved in MK progenitor proliferation

and maturation (Reems et al. 2008; Wang et al. 2011). The corre-

sponding MK-restricted NDR (Table 1) was found to be bound by

the MK-specific transcription factor MEIS1 and to mark an alter-

native promoter of a truncated DNM3 transcript, which is uniquely

expressed in MKs and whose level depends on the rs2038479 ge-

notype (Nürnberg et al. 2012).

Enrichment patterns of SNPs associated with closely related
quantitative traits at cell type–restricted NDRs

Next, we investigated whether the various hematological param-

eters showed different patterns of enrichment at NDRs in the pri-

mary cells (see Fig. 6). In contrast to the analyses presented in

Figure 4, where the different platelet and erythrocyte parameters

were combined, here, we investigated the cellular parameters in-

dividually, and did not focus only on genome-wide significant sig-

nals. We considered sequence variants associated with two platelet

indices (PLT, platelet count; MPV, mean platelet volume) and six

erythrocyte indices (Hb, total concentration of hemoglobin; PCV,

packed red cell volume; RBC, red blood cell count; MCHC, mean red

cell hemoglobin concentration; MCH, mean red cell hemoglobin;

MCV, mean red cell volume). In addition, we examined sequence

variants associated with four nonhematological quantitative traits,

i.e., FG and FI levels, BMI, as well as height (Dupuis et al. 2010;

Lango Allen et al. 2010; Speliotes et al. 2010). As cell type–restricted

NDRs showed stronger enrichment for sequence variants associated

with the relevant trait compared with NDRs shared across cell types

(Fig. 5A,B), we focused this in-depth analysis on NDRs restricted to

MKs, EBs, MOs, or pancreatic islets.

To improve the statistical power of this analysis, we compared

the distribution of P-values for all SNPs located at NDRs to the

distribution of randomly selected SNP sets from the genome,

matched for possible confounding factors (Methods). Specifi-

cally, we calculated the ratio at the 0.005 quantile between the

P-value for a random, matched set of SNPs and the P-value for

the SNPs within NDRs. Then, we estimated the ratio in 5000

bootstrap samples (Supplemental Fig. 8). In the absence of en-

richment at NDRs, this ratio is expected to be one. Thus, this

analysis quantifies to what extent SNPs at NDRs tend to have

lower P-values than SNPs located outside NDRs, providing an

indication of the extent to which SNPs at NDRs in a given cell

type are enriched for potential causative variants compared with

randomly selected SNPs. However, this analysis does not quan-

tify the overall contribution from these variants to the pheno-

typic variation.

We observed diverse cell type–dependent enrichment pat-

terns at NDRs for the various cellular parameters. For example, we

found strong enrichment of SNPs associated with erythrocyte in-

dices at EB-restricted NDRs. MCH and MCV, which are highly

correlated quantitative traits (r = 0.91) (Supplemental Table 10),

showed substantially stronger enrichment (ratios > 106.2 6 1.5)

compared with the other four erythrocyte traits investigated

(ratios < 101.0 6 0.3). This suggests that MCH and MCV may be

governed by molecular processes that are regulated at an intra-

cellular level within the erythroid lineage. Conversely, variants

associated with Hb were not significantly enriched in EB-restricted

NDRs or any other cell type investigated. Indeed, hemoglobin

concentration is tightly regulated by the level of bioavailable iron

and is therefore dependent on several iron hemostasis processes

involving the absorption, storage, and mobilization of iron. These

processes comprise several organs in addition to erythroid cells,

including the gut, the liver, and macrophages.

Both PLT and MPV association signals were enriched at MK-

restricted NDRs. Interestingly, PLT-associated SNPs were also

enriched at NDRs restricted to MOs and pancreatic islets. To shed

light on the properties of the genes closest to these NDRs that

contained a PLT-associated SNP (P < 10�4; n = 75 genes), we per-

formed canonical pathway analyses using the Ingenuity Knowl-

edge Base. We detected a modest enrichment of genes involved in

Table 1. Summary of the functional evidence obtained for platelet candidate functional SNPs through FAIRE, ChIP, and EMSA experiments,
as well as annotation from RegulomeDB

Candidate functional SNP

NDR cell type (Bin)
GATA1/2, TAL1, RUNX1,

or FLI1 binding site in MKs
Binding

in EMSAb

RegulomeDB annotationc

ID Ref/alt GWA locus Score Supporting data

rs1006409a A/G FAR2 MK (2) – Ref 2b TF binding + any motif +
DNase footprint + DNase peak

rs2015599a G/A FAR2 MK (2) – Ref 4 TF binding + DNase peak
rs1107479 C/T PTGES3-BAZ2A MK (4)/EB (4) – Alt 1f eQTL + TF binding or DNase peak
rs3214051 G/A PTGES3-BAZ2A MK (4)/EB (4)/MO (3) FLI1 Equal 4 TF binding + DNase peak
rs17192586 G/A RAD51B MK (3) RUNX1 Alt 4 TF binding + DNase peak
rs2038479a C/A DNM3 MK (3) – Ref 5 TF binding or DNase peak
rs2038480a A/T DNM3 MK (3) – Alt 5 TF binding or DNase peak
rs214060 C/T LRRC16A MK (3) – Alt 4 TF binding + DNase peak
rs3804749 C/T PDIA5 MK (4) TAL1 Equal 5 TF binding or DNase peak
rs4148450 C/T ABCC4 MK (2) RUNX1 Alt 4 TF binding + DNase peak
rs55905547 A/G CTSZ-TUBB1 MK (3) GATA1 + TAL1 Equal — —
rs6771416 G/A KALRN MK (2) GATA1 + TAL1 Alt 2b TF binding + any motif +

DNase footprint + DNase peak
rs7618405 C/A SATB1 MK (4) GATA1 + RUNX1 + FLI1 + TAL1 Ref 4 TF binding + DNase peak

(Ref ) Reference allele. (Alt) Alternative allele. (TF) Transcription factor.
aSNPs were located within the same NDR at the reported GWA locus.
bThe reported allele of the candidate SNP indicates the EMSA probe with the stronger nuclear protein binding in CHRF-288-11 cells.
cRegulomeDB score definition according to http://www.regulomedb.org/help#score (Boyle et al. 2012).
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‘‘cell-to-cell signaling and interaction’’ (range, P = 4.52 3 10�2 to

1.17 3 10�1, Benjamini-Hochberg corrected for multiple testing;

n = 10). Notably, these genes included THBS1 (encoding throm-

bospondin 1), WASL (Wiskott-Aldrich syndrome-like), and EDN1

(endothelin 1), which have a marked role in the activation of blood

platelets (Dorahy et al. 1997; Falet et al. 2002; Jagroop et al. 2005).

This suggests the involvement of non-cell-autonomous mecha-

nisms for the regulation of platelet count, whereby extrinsic fac-

tors expressed by MOs or their progeny regulate the differentiation

and proliferation of the hematopoietic stem cells toward MKs and

the removal of senescent platelets from the circulation by liver-

residing MO-derived macrophages.

The variation in enrichment patterns for cellular parameters

of the same cell type was further illustrated by a trend of depletion

of MCHC- and PCV-associated SNPs at MK-restricted NDRs. MCH-

and MCV-associated SNPs showed the opposite trend and were

enriched at MK-restricted NDRs.

Some quantitative traits showed enrichment at NDRs in sev-

eral different cell types. For example, PLT-associated SNPs were

enriched at NDRs restricted to all four assayed cell types. A subset of

platelet (i.e., PLT) and erythrocyte traits (i.e., MCH, MCV, RBC, and

PCV) was enriched at pancreatic islet-restricted NDRs.

SNPs associated with the four nonhematological quantitative

traits tested were either not enriched or only weakly enriched at

NDRs restricted to hematopoietic cells. Notably, height-associated

SNPs were not significantly enriched at NDRs, even though this

GWA study was very well powered. In contrast, FG-associated SNPs

showed evidence for enrichment in three cell types. We note that

the NDRs considered here may in fact be shared across other cell

types not tested in this study, and thus, the corresponding gene

expression pattern may be more global.

Taken together, these findings demonstrate that distinct cell

type–restricted patterns can be identified for closely related

quantitative traits, and for different hematological parameters of

the same cell type, which we suggest reflect aspects of the different

underlying molecular mechanisms. Thus, candidate variants may

be subdivided based on their overlap with NDRs restricted to cer-

tain cell types, allowing for more informative downstream func-

tional analyses.

Discussion
We generated genome-wide maps of open chromatin in human

myeloid cells and used these to define cell type–dependent en-

richment patterns of sequence variants associated with hemato-

logical quantitative traits at NDRs. These patterns allowed us to

dissect platelet and erythrocyte quantitative trait associations in

effector cell types within the myeloid arm of hematopoiesis.

Although immortalized cell lines are valuable tools for the

discovery of NDRs, there were clear differences in patterns of

chromatin accessibility compared with primary cells (Fig. 2A,B;

Supplemental Table 2; Supplemental Fig. 2A–K). Among many

factors, these differences may arise through serial subculturing

of immortalized cell lines, resulting in a more homogenous cell

population. Furthermore, the primary cells obtained by culture,

i.e., MKs and EBs, will be more heterogeneous populations of cells

at different stages of lineage commitment and maturation. Of the

68 and 75 GWA loci associated with platelet and erythrocyte traits,

respectively, only five overlapped. This suggests that the effect of

common variants on the formation of platelets and erythrocytes

occurs after the MK-erythroid progenitor has committed to the

megakaryocytic and erythroid lineages, making our findings with

primary lineage-committed MKs and EBs particularly valuable for

biological interpretation of NDRs.

We stratified NDRs based on their signal strength (peak score)

into four intensity bins and excluded the lowest intensity bin (Bin

1) from further analyses due to the lack of reproducibility of FAIRE

peaks between replicates, and limited overlap with other regula-

tory marks (Supplemental Table 4A,B). We recognize that division

of peaks into four bins is arbitrary, but it represented the simplest

approach to yield a sufficient number of peaks per bin to carry out

the statistical analyses. With this caveat in mind, we provided

Figure 5. Cell type distribution of NDRs containing candidate functional variants. We considered GWA index SNPs associated with platelet (A) and
erythrocyte (B) parameters, as well as their proxy SNPs in high LD (r 2 > 0.8; located within 1 Mb of index SNPs). NDRs were ranked by signal strength
(F-Seq peak score). Then, these rankings were used to divide the NDRs into cumulative tranches (x-axis) to investigate the impact of peak calling
thresholds on results. For example, the first bar represents the tranche containing the 1000 top-ranked NDRs, whereas the penultimate bar represents
the tranche containing the 10,000 top-ranked NDRs of each cell type. The bars summarize the cell type distribution of candidate functional SNPs at NDRs
as a percentage of the tranche-specific total. The last bar, labeled ‘‘Bkg,’’ represents the expected cell type distribution for the SNPs under the null
hypothesis. The solid line indicates the number of SNPs overlapping the tranche-specific NDRs. The results showed that for both platelet and erythrocyte
QTLs, the candidate functional variants were most commonly found at MK- and EB-restricted NDRs, respectively. This was true across the spectrum of peak
calling thresholds.
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evidence that NDRs of different signal strength have different

functional features. For example, NDRs in the lowest retained in-

tensity bin (Bin 2) were found to be located distal from the TSS and

to overlap with H3K4me1 sites, similar to features of enhancer

elements (Ernst and Kellis 2010; Ernst et al. 2011). Therefore, we

suggest that stratification of peaks with respect to signal strength

can be used to tailor downstream functional analyses.

We showed that there is cell type–dependent enrichment of

hematological trait-associated variants at NDRs. For the genome-

wide significant SNPs, we found that ;50% of the overlaps are not

due to chance (estimated as the asymptotic enrichment of about

two for unrelated cells in Supplemental Fig. 5A,B). Given our ob-

servation that ;25% of the SNPs overlap a FAIRE peak (Fig. 4A,B),

we suggest that ;50% 3 25% = 12.5% could be used as an estimate

for the contribution from SNPs at NDRs to phenotypic variance

explained by additive genetic effects using the cell types in-

vestigated. Since we did not find an overlap for every genome-wide

significant SNP with a FAIRE peak, we do not claim that NDRs in

the three primary cell types can explain all association signals.

We tested 13 candidate regulatory variants at platelet QTLs in

EMSA studies, and provided evidence that all but three (76.9%) of

the tested SNPs exerted their effect through disruption or in-

troduction of nuclear protein binding sites. This suggests that the

impact of trait-associated sequence variants on protein binding

sites may prove to be a key molecular mechanism at non-protein-

coding regions. Indeed, results from our tightly focused analysis

of hematopoietic QTLs confirm recent observations made by

ENCODE and others that GWA variants frequently affect tran-

scription factor occupancy as well as alter allelic chromatin states

(The ENCODE Project Consortium 2012; Maurano et al. 2012). We

tested by EMSA three additional candidate SNPs that were located

within FAIRE peaks in the lowest intensity bin (Bin 1), which was

excluded from analyses (see above). All three tested SNPs, i.e.,

rs11731274 and rs11734099 at the KIAA0232 gene locus and

rs2735816 at the BRF1 locus (Supplemental Table 7A), did not

show differential binding of nuclear proteins (Supplemental Fig.

6C,D,J). Although these findings further justify our decision to

exclude FAIRE peaks in Bin 1 from analyses, we also expect that

a fraction of these peaks is likely to correspond to functional ele-

ments. A more refined approach, for example by incorporating

overlaps with additional histone marks, will be needed to dissect

more accurately this set of peaks.

As shown in Table 1, the functional evidence we obtained for

the platelet candidate variants through EMSAs did not consistently

correlate with publicly available regulatory annotation data sets.

It is important to note that mere overlap of regulatory features

(such as NDRs, transcription factor binding sites, and others) with

a candidate SNP is not proof of a functional role of that SNP.

For example, the SNP rs3214051 was located at an NDR shared

across MKs, EBs, and MOs, and coincided with transcription factor

binding sites, including FLI1, at the PTGES3-BAZ2A locus. How-

ever, EMSA experiments did not reveal differential protein binding

between the allelic probes of the candidate SNP. Further experi-

ments have to be carried out to investigate whether such SNPs af-

fect the platelet phenotype through alternative molecular mech-

anisms. Several examples of such suitable experimental strategies

have recently been described in the literature (Pomerantz et al.

2009; Tuupanen et al. 2009; Gaulton et al. 2010; Musunuru et al.

2010; Harismendy et al. 2011; Paul et al. 2011).

Sequence variants that are strongly associated with a quanti-

tative trait but without necessarily surpassing the genome-wide

threshold of significance (P = 5 3 10�8) are very likely to include

additional true positive signals in well-powered GWA studies, such

as the two large GWA meta-analyses we examined here (Gieger

et al. 2011; van der Harst et al. 2012). There is an increasing body of

evidence that functional data, e.g., gene expression QTLs, can be

successfully correlated with GWA studies to reduce the false-dis-

covery rate and identify novel association signals (Nicolae et al.

2010). In that context, we calculated the enrichment at the 0.005

quantile (Fig. 6; Supplemental Fig. 8), which places more emphasis

on weaker regulatory associations that did not reach the threshold

of genome-wide significance. This may explain the different re-

sults for the pancreatic islets, for which no enrichment was found

using the genome-wide–associated SNPs (Fig. 4C,D; Supplemental

Fig. 5A–D), while enrichment was found in the analysis that used

all SNPs (Fig. 6). The observed enrichment of hematological trait-

associated SNPs (P > 5 3 10�8) at cell type–restricted NDRs suggests

that maps of open chromatin have the potential to pinpoint

candidate sequence variants below the genome-wide significance

threshold, effectively reducing the number of false-positive as-

sociations. Integration of such variants in network analyses and

subsequent functional studies may provide valuable biological

insights.

A more complete catalog of chromatin profiles will be needed

to address whether the candidate functional SNPs have truly cell

type–specific effects (i.e., out of all possible cell types). This can be

addressed by large collaborative efforts such as ENCODE (The

ENCODE Project Consortium 2012), BLUEPRINT (Adams et al.

2012), and the Roadmap Epigenomics Project (Bernstein et al.

2010). Incorporation of these genome- and epigenome-wide data

sets in a multitude of different primary cell types will greatly fa-

cilitate the systematic functional interpretation of noncoding

trait-associated sequence variants in terms of effector cell type and

underlying molecular mechanism.

Methods

MO isolation
We isolated MOs from residual leukocytes obtained following
apheresis platelet collections from Cambridge BioResource vol-
unteers at NHS Blood and Transplant, Cambridge. Each sample
(7.5 mL) was diluted 1:2 with PBE buffer (PBS [Sigma-Aldrich] at pH
7.2, 2 mM EDTA [Sigma-Aldrich], and 0.5% BSA [Sigma-Aldrich])
and gently layered onto the membrane of a 50-mL Leucosep tube
(Greiner Bio-One). Samples were centrifuged for 15 min at 800g at
room temperature (RT). The peripheral blood mononuclear cell
(PBMC) layer was transferred into a fresh 50-mL tube. PBMCs from
different Leucosep tubes were pooled, washed three times with
25 mL PBE buffer, and centrifuged for 5 min at 500g at RT. PBMCs
were counted, diluted to 1 3 108 cells/mL with PBE buffer, and
transferred into 5-mL polystyrene round-bottom tubes (BD Bio-
sciences). MO isolation was performed using the EasySep Human
CD14 Positive Selection Kit (StemCell Technologies) according to
the manufacturer’s instructions.

MK and EB culture

Umbilical cord blood was obtained after informed consent under
a protocol approved by the NHS Cambridgeshire Research Ethics
Committee (07/MRE05/44). Cord blood was collected into cord
blood collection bags (MacoPharma). CD34+ HPCs were purified
using the CD34 MicroBead Kit (Miltenyi Biotec) following the
manufacturer’s instructions. We tested purity (92%–98%) and vi-
ability of HPCs by flow cytometry. For in vitro differentiation of
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HPCs into MKs, 150,000 cells/mL/well were seeded in serum-free
medium (CellGro SCGM, CellGenix) supplemented with 50 ng/mL
human recombinant thrombopoietin (rhTPO; CellGenix) and
10 ng/mL interleukin 1, beta (rhIL-1b; Miltenyi Biotech). To
differentiate HPCs into EBs, we seeded 5000 cells/mL/well in se-
rum-free medium supplemented with 6 units/mL erythropoietin
(rhEPO; R&D Systems), 10 ng/mL interleukin-3 (rhIL-3; Miltenyi
Biotech), and 100 ng/mL stem cell factor (rhSCF; R&D Systems).
Cells were cultured for 10 d at 37°C and 5% CO2. On the day of
harvest, a cell aliquot was stained with 0.2% Trypan blue, and live
cells were counted using a hemocytometer (InCyto C-Chip, VWR
International).

Cell morphology and flow cytometric analysis

For cell morphological analysis, aliquots of 50,000 cells were
centrifuged onto a glass slide for 5 min at 400g at RT and stained
with modified Wright’s stain using an automated slide stainer
(HemaTek 1000, Miles Laboratories). Stained cytospins were
microscopically analyzed (Axiovert 40 CFL, AxioCam HSc, and
AxioVision v4.5; Carl Zeiss MicroImaging). Aliquots of 300,000
cells were used for flow cytometry. We stained MOs with human
anti-CD14-PE clone TUK4 and anti-CD45-FITC clone c29/33
(Alere), as well as FITC and PE mouse monoclonal IgG1 isotype
control (BD Biosciences). After antibody incubation, 500 mL
washing buffer PBE buffer (PBS [Sigma-Aldrich] at pH 7.2, 2 mM
EDTA [Sigma-Aldrich], and 0.5% BSA [Sigma-Aldrich]), and 5 mg/mL
7-amino actinomycin D (7-AAD; Invitrogen) were added. Flow
cytometric analysis of MKs and EBs was performed according to the

method previously described (Macaulay
et al. 2007; Tijssen et al. 2011) using the
following antibodies: human anti-CD41a-
APC clone HIP8, anti-CD42a-FITC clone
ALMA.16, anti-CD235a-FITC clone GA-R2
(HIR2), and anti-CD34-PE clone 581 (BD
Biosciences). All samples were analyzed on
the CyAn ADP 9-Color flow cytometer
using thesoftwareSummit v4.3.02 (Beckman
Coulter).

Ploidy stain of MKs

An aliquot of 1 3 106 MKs was fixed with
70% (w/v) ethanol (Sigma-Aldrich) for 30
min at RT, washed once with PBE buffer
(PBS [Sigma-Aldrich] at pH 7.2, 2 mM
EDTA [Sigma-Aldrich] and 0.5% BSA
[Sigma-Aldrich]) and stained human anti-
CD41a-APC clone HIP8 (BD Biosciences)
or matched isotype control, as described
above. After centrifugation, cells were
resuspended in 500 mL staining buffer
(465 mL PBE buffer, 5 mL 10% Tween-20
[Sigma-Aldrich], 5 mL of 10 mg/mL RNase
A [Sigma-Aldrich], and 25 mL propidium
iodide [Sigma-Aldrich]). After incubation
for 30 min at 37°C, DNA content was
determined using a flow cytometer.

Formaldehyde-assisted isolation
of regulatory elements

CHRF-288-11 cells were cultured accord-
ing to the method previously described
(Paul et al. 2011). We used approximately

10 3 106 CHRF-288-11 cells for each FAIRE experiment. Each
FAIRE assay in primary human MKs, EBs, and MOs was performed
with approximately 15 3 106 cells from two independent extrac-
tions. FAIRE was performed according to the method previously
described (Paul et al. 2011), except that cross-linked washed cell
pellets were resuspended in 2 mL of lysis buffer (10 mM Tris
[Thermo Fisher Scientific] at pH 8.0, 10 mM NaCl [VWR BDH
Prolabo], 13 EDTA-free Protease Inhibitor [Complete Mini, Roche]
and 0.2% Tergitol solution [Type NP-40, Sigma-Aldrich]). The
sample was incubated for 10 min on ice. FAIRE DNA was processed
following the Illumina paired-end library generation protocol.
Genomic libraries derived from MO extractions and CHRF-288-11
cells were sequenced on Illumina HiSeq 2000 with 50-bp and 75-bp
paired-end reads, respectively. Libraries derived from EB and MK
cultures were sequenced on Illumina GAIIx with 54-bp paired-end
reads.

Sequence data processing

Raw sequence reads were aligned to the human reference sequence
(NCBI build 37) using the algorithm Stampy (Lunter and Goodson
2011). Reads were realigned around known insertions and de-
letions (The 1000 Genomes Project Consortium 2010), followed by
base quality recalibration using the Genome Analysis Toolkit
(GATK) (McKenna et al. 2010). Duplicates were flagged using the
software Picard (http://picard.sourceforge.net/) and excluded from
subsequent analyses. We retrieved FAIRE raw sequencing data for
K562 erythroblastoid cells (GEO accession no. GSM864361) (The
ENCODE Project Consortium 2012) and pancreatic islets (GEO

Figure 6. Enrichment patterns of quantitative trait-associated variants with small effect sizes at cell
type–restricted NDRs. The data points shown as circles and rectangles represent the deviation of the
P-value distribution of SNPs at NDRs restricted to MKs, EBs, MOs, or pancreatic islets (ISLs) from the
P-value distribution of matched randomly sampled SNPs at the 0.005 quantile (Supplemental Fig. 8).
Thus, this deviation measures the level of enrichment of associated sequence variants at NDRs, where
the circle and rectangle surface areas represent level of enrichment (mean ratios > 1) and depletion
(mean ratios < 1), respectively. Gray symbols represent ratios that are not significantly different from 1; i.e.,
the mean ratio across replicates was within 2 SDs of 1. The level of enrichment is indicated for sequence
variants associated with two platelet traits ([PLT] platelet count; [MPV] mean platelet volume), six eryth-
rocyte indices ([Hb] total hemoglobin concentration; [PCV] packed red cell volume; [RBC] red blood cell
count; [MCHC] mean red cell hemoglobin concentration; [MCH] mean red cell hemoglobin; [MCV]
mean red cell volume), as well as four nonhematological quantitative traits ([FG] fasting glucose; [FI]
fasting insulin; [BMI] body mass index; height). The circle area labeled ‘‘Power’’ gives a quantification of
the amount of signal present in each GWA data set. Specifically, it represents the deviation of the P-value
distribution of all tested SNPs from the expectation under the null at the 0.005 quantile.
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accession no. GSM491290) (Gaulton et al. 2010), and remapped
the data as described above. An overview of the sequencing sta-
tistics is provided in Supplemental Table 1.

Peak calling and binning strategy

Regions of enrichment (peaks) were determined using the software
F-Seq v1.84 (Boyle et al. 2008). We applied a feature length of L =

600 bp and two different SD thresholds of T = 6.0 (‘‘moderate’’) and
T = 8.0 (‘‘stringent’’) over the mean across a local background. In
order to reduce false-positive peak calls, we removed regions of
collapsed repeats according to the method recently described
(Pickrell et al. 2011), applying a threshold of 0.1% (http://eqtl.
uchicago.edu/Masking). For comparison of open chromatin pro-
files, all read fragments were merged into one data set for each cell
type. Then, peaks were called as described. For the K562 and
pancreatic islets single-end sequencing data sets, we adjusted the
mode of the peak width distribution to the mean of the modes
across all non-K562 cells/pancreatic islets. We defined four equally
spaced intensity bins between the first and 99th percentile of the
log10-transformed F-Seq peak score distribution (termed ‘‘Bins
1–4’’). Then, we added the peaks below the first percentile and
above the 99th percentile of the peak score distribution to Bin 1
and Bin 4, respectively. Supplemental Table 2 and Supplemental
Table 3 give an overview of the peak data sets. ChIP-seq data sets in
primary MKs were obtained from Tijssen et al. (2011) (GEO ac-
cession no. GSE24674). The peak coordinates were remapped to
hg19 (minimum ratio of bases that must remap: 0.95) using the
Lift-Over tool v1.0.3 of the web-based analysis platform Galaxy
(http://main.g2.bx.psu.edu/).

Hierarchical cluster analysis

First, we created the union set of all peaks across all samples. Next,
we defined a vector of binary values for each sample s, where the
length of this vector is given by the total number of peaks in the
union set and is therefore the same for all samples. Position i in
the vector for sample s was set to a value of one, if the peak i in the
union peak set overlaps with a peak in sample s. If there was no
overlap with a peak in sample s, position i was set to zero. From these
vectors, we constructed bin-specific vectors based on the binning
scheme described above. For each bin and sample, we defined
a vector where all entries with a peak score not between the lower
and upper peak scores defined for that bin were set to zero. We then
used the R package Pvclust (Suzuki and Shimodaira 2006) to perform
a bootstrapped hierarchical cluster analysis of the samples based on
these binary vectors, using the ‘‘binary’’ distance measure and the
‘‘complete’’ method for defining the clusters (Suzuki and Shimodaira
2006). Here, 1000 bootstrap samples were applied. All analyses were
carried out in the R/Bioconductor environment.

Gene expression analysis during in vitro differentiation of cord
blood–derived HPCs

Experiments and statistical analyses were performed according to
the method previously described (Gieger et al. 2011). Briefly, MKs
and EBs were differentiated from cord blood–derived HPCs as de-
scribed above. Time points were taken at days 3, 5, 7, 9, 10, and 12.
Whole-genome gene expression levels were measured using Illu-
mina HumanWG-6 v3 Expression BeadChips. Expressed probes
were selected based on stringent thresholds, and the slope of
expression was determined using standard linear regression. To
every FAIRE peak, we assigned the single closest Ensembl transcript
(release 69) with a HGNC symbol.

H3K4me1 and H3K4me3 ChIP

MKs and EBs were differentiated from cord blood–derived HPCs as
described above. ChIP assays were performed according to the
method previously described (Forsberg et al. 2000), using rabbit
polyclonal antibodies against H3K4me1 (ab8895, Abcam) and
H3K4me3 (07-473, Millipore). Chromatin-immunoprecipitated DNA
was sequenced on Illumina GAII with 54-bp single-end reads. Se-
quence reads were aligned using the algorithm BWA (Li and Durbin
2009). Areas of enrichment were determined using the slice func-
tion of the R package IRanges (http://bioconductor.org/packages/
2.10/bioc/html/IRanges.html). Histone modification raw sequenc-
ing data for MOs were retrieved from ENCODE (GEO accession nos.
GSM1003535 and GSM1003536) (The ENCODE Project Consortium
2012) and reanalyzed as described above. For H3K4me1, we identi-
fied 79,049 regions of enrichment in MKs, 66,410 in EBs, and 77,051
in MOs. For H3K4me3, 17,402 regions were found in MKs, 16,871 in
EBs, and 33,842 in MOs.

Annotation of NDRs using GREAT

We analyzed the ontology of genes flanking FAIRE peaks using
GREAT v1.8.2 (McLean et al. 2010) with the following parameters:
association rule: single nearest gene; 1 Mb maximal extension;
curated regulatory domains excluded. The genomic distances be-
tween FAIRE peaks and TSSs were exported from the genomic re-
gion–gene association table in GREAT.

Overlap of NDRs with genome-wide significant SNPs associated
with hematological traits

For each GWA locus, candidate functional SNPs were selected by
identifying all biallelic SNPs with an r2 > 0.8 and within 1 Mb of the
lead SNP in the European samples of the 1000 Genomes Project
data set (interim phase I release of June 2011). We determined if at
least one of these candidate SNPs overlapped with a FAIRE peak.
Since this analysis is sensitive to the number of peaks, the overlap
was carried out for a successively increasing number of peaks (cu-
mulative tranches) by considering peaks with decreasing peak rank
(F-Seq peak score). As more peaks are considered, the chance of
finding an overlap increases. Therefore, we estimated the signifi-
cance of our findings by resampling. Samples were drawn from
the Phase II HapMap panel of approximately 2.6 3 106 SNPs (The
International HapMap Consortium 2007), such that the MAF, the
distance to a TSS, and the number of proxy SNPs (r2 > 0.8) had
the same distribution as the genome-wide significant lead SNPs.
This was achieved by estimating the joint distribution of the
signed distance to a TSS and the number of proxy SNPs using a two-
dimensional Gaussian kernel density estimate as implemented
in the R package KernSmooth (http://cran.r-project.org/web/packages/
KernSmooth/). The MAF was treated as an independent variable
and was also estimated using a one-dimensional Gaussian kernel
density estimate. We sampled with replacement 100,000 sets of
lead SNPs (loci) of equal size as in the GWA study and with similar
distribution of MAF, distance to TSS, and number of proxy SNPs per
locus, representing loci drawn from the null distribution. Fold
enrichment and Z-scores were calculated relative to the mean and
SD of the observed number of GWA loci overlapping with an
NDR for the null lead SNP sets. All analyses were carried out in the
R/Bioconductor environment.

Canonical pathway analysis using the Ingenuity Knowledge
Base

Genes were subjected to the core analysis module of the software
Ingenuity IPA v14197757 (http://www.ingenuity.com) and analyzed
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using the following parameters: reference set: Ingenuity Knowl-
edge Base (genes only); relationship to include: direct and indirect;
filter: only molecules and/or relationships where species=human
and confidence=experimentally observed. We report Benjamini-
Hochberg multiple test corrected P-values.

Electrophoretic mobility shift assays (EMSAs)

EMSAs using nuclear extracts from CHRF-288-11 cells were per-
formed according to the method previously described (Paul et al.
2011). Oligonucleotide probes were designed based on the geno-
mic sequence surrounding the candidate SNPs. A list of the oli-
gonucleotides is provided in Supplemental Table 9. Competitor
probes were prepared without biotin labels. All oligonucleotides
were synthesized by Sigma-Aldrich. For competition assays, we
used 100- or 200-fold molar excess (as indicated in Supplemental
Figs. 6A–O, 7B) of the unlabeled probes.

Enrichment analysis using bootstrapped quantile distributions

The association analysis for the hematological quantitative traits
was performed by imputation to the Phase II HapMap panel (The
International HapMap Consortium 2007). To improve the cover-
age, we determined for each HapMap SNP which 1000 Genomes
SNPs (interim phase I release of June 2011) within a distance of
50 kb had an r 2 > 0.95 with the imputed HapMap SNPs. For each
trait, we assigned the P-value of the HapMap SNP from the meta-
analysis to the 1000 Genomes SNP. To prevent chance inflation
from LD and to obtain confidence estimates, SNPs were randomly
removed until the genomic distance between remaining SNPs was
at least 50 kb. For each combination of trait and cell type, we cre-
ated 5000 bootstrap samples of 1000 Genomes SNPs located at
a cell type–restricted NDR. Then, for each bootstrap sample of SNPs
located at an NDR, we created a matched null set of SNPs by
sampling from the full set of 1000 Genomes SNPs that had an r2 >

0.95 with a HapMap SNP. Each SNP was annotated for (1) MAF in
the 1000 Genomes data set (bin boundaries: 0.0, 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 1.0); (2) genomic annotation (categories: exon, intron/
39 UTR, promoter/TSS/59 UTR, intergenic/noncoding); (3) 36-bp
mappability (bin boundaries 0.0, 0.95, 1.0) (http://hgdownload.
cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
wgEncodeCrgMapabilityAlign36mer.bigWig); and (4) absolute
distance from the TSS of the nearest gene (bin boundaries: 0 kb,
1 kb, 10 kb, 100 kb, 1 Gb). We note that many of these categories
are correlated, e.g., genomic annotation and distance to TSS. The
distribution of annotation categories of SNPs in the null set was
matched to that of the SNPs located at NDRs by sampling 10
random SNPs with the same annotation in the four categories
for each SNP located at an NDR. The enrichment was quantified
as the mean difference between the �log10(P-value) at the 0.005
quantile in the sample of SNPs located at NDRs and the �log10(P-
value) at the 0.005 quantile in the matched null set. The enrichment
may be interpreted as the relative genomic inflation factor at the
0.005 quantile. The 0.005 quantile provides a trade-off between
highlighting differences in enrichment between different cell types
and reducing uncertainty in the estimates of the relative genomic
inflation factors. All analyses were carried out in the R/Bioconductor
environment.

Data access
The sequence data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo/) under accession no. GSE37916.

Acknowledgments
We thank S.F. Garner (Department of Haematology, University of
Cambridge & NHS Blood and Transplant, Cambridge, UK) and
D.M. Bloxham (Department of Haematology, University of Cam-
bridge & Addenbrooke’s Hospital, Cambridge) for support. We
thank the core informatics, library-making, and sequencing teams
at the Wellcome Trust Sanger Institute. D.S.P. and K.V. are sup-
ported by the Marie-Curie Initial Training Network NETSIM
(EC-215820). D.S.P. is further supported by the EU-FP7 Project
BLUEPRINT (282510). C.A.A. and A.R. are funded by the British
Heart Foundation Program Grant RG/09/12/28096. J.S. and W.H.O.
are supported by a grant from the National Institutes for Health
Research (RP-PG-0310-1002). N.S. and P.D. are supported by the
Wellcome Trust (098051).

Author contributions: D.S.P., K.V., and P.D. conceived and
designed the experiments. D.S.P., K.V., and J.S. performed the
experiments. C.A.A., A.R., and D.S.P. performed statistical
analysis. C.A.A., A.R., D.S.P., and K.V. analyzed the data. P.vdH.,
J.C.C., and N.S. contributed GWA meta-analysis data sets. P.D.
and W.H.O. jointly supervised the research. D.S.P. and P.D.
prepared the manuscript, with major contribution from C.A.A.,
A.R., and W.H.O.

References

The 1000 Genomes Project Consortium. 2010. A map of human
genome variation from population-scale sequencing. Nature 467:
1061–1073.

Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, Bock C,
Boehm B, Campo E, Caricasole A, et al. 2012. BLUEPRINT to
decode the epigenetic signature written in blood. Nat Biotechnol 30:
224–226.

Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A,
Meissner A, Kellis M, Marra MA, Beaudet AL, Ecker JR, et al. 2010. The
NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 28:
1045–1048.

Boyle AP, Guinney J, Crawford GE, Furey TS. 2008. F-Seq: A feature density
estimator for high-throughput sequence tags. Bioinformatics 24: 2537–
2538.

Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M,
Karczewski KJ, Park J, Hitz BC, Weng S, et al. 2012. Annotation of
functional variation in personal genomes using RegulomeDB. Genome
Res 22: 1790–1797.

Cooper GM, Shendure J. 2011. Needles in stacks of needles: Finding
disease-causal variants in a wealth of genomic data. Nat Rev Genet 12:
628–640.

Donnelly P. 2008. Progress and challenges in genome-wide association
studies in humans. Nature 456: 728–731.

Dorahy DJ, Thorne RF, Fecondo JV, Burns GF. 1997. Stimulation of platelet
activation and aggregation by a carboxyl-terminal peptide from
thrombospondin binding to the integrin-associated protein receptor.
J Biol Chem 272: 1323–1330.

Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU,
Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, et al. 2010. New genetic
loci implicated in fasting glucose homeostasis and their impact on type
2 diabetes risk. Nat Genet 42: 105–116.

The ENCODE Project Consortium. 2012. An integrated encyclopedia of
DNA elements in the human genome. Nature 489: 57–74.

Ernst J, Kellis M. 2010. Discovery and characterization of chromatin states
for systematic annotation of the human genome. Nat Biotechnol 28:
817–825.

Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB,
Zhang X, Wang L, Issner R, Coyne M, et al. 2011. Mapping and
analysis of chromatin state dynamics in nine human cell types. Nature
473: 43–49.

Evans DM, Frazer IH, Martin NG. 1999. Genetic and environmental causes
of variation in basal levels of blood cells. Twin Res 2: 250–257.

Falet H, Hoffmeister KM, Neujahr R, Hartwig JH. 2002. Normal Arp2/3
complex activation in platelets lacking WASp. Blood 100: 2113–2122.

Forsberg EC, Downs KM, Bresnick EH. 2000. Direct interaction of NF-E2
with hypersensitive site 2 of the b-globin locus control region in living
cells. Blood 96: 334–339.

Paul et al.

1140 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on August 6, 2014 - Published by genome.cshlp.orgDownloaded from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://genome.cshlp.org/
http://www.cshlpress.com


Garner C, Tatu T, Reittie JE, Littlewood T, Darley J, Cervino S, Farrall M, Kelly
P, Spector TD, Thein SL. 2000. Genetic influences on F cells and other
hematologic variables: A twin heritability study. Blood 95: 342–346.

Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP,
Panhuis TM, Mieczkowski P, Secchi A, Bosco D, et al. 2010. A map of
open chromatin in human pancreatic islets. Nat Genet 42: 255–259.

Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. 2010.
Development of monocytes, macrophages, and dendritic cells. Science
327: 656–661.

Gieger C, Radhakrishnan A, Cvejic A, Tang W, Porcu E, Pistis G, Serbanovic-
Canic J, Elling U, Goodall AH, Labrune Y, et al. 2011. New gene
functions in megakaryopoiesis and platelet formation. Nature 480: 201–
208.

Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren
B, Fu X-D, Topol EJ, Rosenfeld MG, et al. 2011. 9p21 DNA variants
associated with coronary artery disease impair interferon-g signalling
response. Nature 470: 264–268.

The International HapMap Consortium. 2007. A second generation human
haplotype map of over 3.1 million SNPs. Nature 449: 851–861.

Jagroop IA, Daskalopoulou SS, Mikhailidis DP. 2005. Endothelin-1 and
human platelets. Curr Vasc Pharmacol 3: 393–399.

Jedlitschky G, Tirschmann K, Lubenow LE, Nieuwenhuis HK, Akkerman
JWN, Greinacher A, Kroemer HK. 2004. The nucleotide transporter
MRP4 (ABCC4) is highly expressed in human platelets and present in
dense granules, indicating a role in mediator storage. Blood 104: 3603–
3610.

Jedlitschky G, Cattaneo M, Lubenow LE, Rosskopf D, Lecchi A, Artoni A,
Motta G, Nießen J, Kroemer HK, Greinacher A. 2010. Role of MRP4
(ABCC4) in platelet adenine nucleotide-storage. Am J Pathol 176: 1097–
1103.

Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F,
Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, et al. 2010.
Hundreds of variants clustered in genomic loci and biological pathways
affect human height. Nature 467: 832–838.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754–1760.

Lunter G, Goodson M. 2011. Stampy: A statistical algorithm for sensitive
and fast mapping of Illumina sequence reads. Genome Res 21: 936–
939.

Macaulay IC, Tijssen MR, Thijssen-Timmer DC, Gusnanto A, Steward M,
Burns P, Langford CF, Ellis PD, Dudbridge F, Zwaginga J-J, et al. 2007.
Comparative gene expression profiling of in vitro differentiated
megakaryocytes and erythroblasts identifies novel activatory and
inhibitory platelet membrane proteins. Blood 109: 3260–3269.

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H,
Reynolds AP, Sandstrom R, Qu H, Brody J, et al. 2012. Systematic
localization of common disease-associated variation in regulatory DNA.
Science 337: 1190–1195.

McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis
JPA, Hirschhorn JN. 2008. Genome-wide association studies for
complex traits: Consensus, uncertainty and challenges. Nat Rev Genet
9: 356–369.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010. The Genome
Analysis Toolkit: A MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res 20: 1297–1303.

McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM,
Bejerano G. 2010. GREAT improves functional interpretation of cis-
regulatory regions. Nat Biotechnol 28: 495–501.

Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li
X, Li H, Kuperwasser N, Ruda VM, et al. 2010. From noncoding variant
to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466: 714–
719.

Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. 2010. Trait-
associated SNPs are more likely to be eQTLs: Annotation to enhance
discovery from GWAS. PLoS Genet 6: e1000888.

Nürnberg ST, Rendon A, Smethurst PA, Paul DS, Voss K, Thon JN, Lloyd-
Jones H, Sambrook JG, Tijssen MR, Italiano JE Jr, et al. 2012. A GWAS
sequence variant for platelet volume marks an alternative DNM3
promoter in megakaryocytes near a MEIS1 binding site. Blood 120:
4859–4868.

Paul DS, Nisbet JP, Yang T-P, Meacham S, Rendon A, Hautaviita K, Tallila J,
White J, Tijssen MR, Sivapalaratnam S, et al. 2011. Maps of open
chromatin guide the functional follow-up of genome-wide association
signals: Application to hematological traits. PLoS Genet 7: e1002139.

Pickrell JK, Gaffney DJ, Gilad Y, Pritchard JK. 2011. False positive peaks in
ChIP-seq and other sequencing-based functional assays caused by
unannotated high copy number regions. Bioinformatics 27: 2144–
2146.

Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H,
Beckwith CA, Chan JA, Hills A, Davis M, et al. 2009. The 8q24 cancer risk
variant rs6983267 shows long-range interaction with MYC in colorectal
cancer. Nat Genet 41: 882–884.

Reems J-A, Wang W, Tsubata K, Abdurrahman N, Sundell B, Tijssen MR, van
der Schoot E, Summa FD, Patel-Hett S, Italiano JE Jr, et al. 2008.
Dynamin 3 participates in the growth and development of
megakaryocytes. Exp Hematol 36: 1714–1727.

Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU,
Lango Allen H, Lindgren CM, Luan J, Magi R, et al. 2010. Association
analyses of 249,796 individuals reveal 18 new loci associated with body
mass index. Nat Genet 42: 937–948.

Suzuki R, Shimodaira H. 2006. Pvclust: An R package for assessing the
uncertainty in hierarchical clustering. Bioinformatics 22: 1540–1542.

Tijssen MR, Cvejic A, Joshi A, Hannah RL, Ferreira R, Forrai A, Bellissimo DC,
Oram SH, Smethurst PA, Wilson NK, et al. 2011. Genome-wide analysis of
simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in
megakaryocytes identifies hematopoietic regulators. Dev Cell 20: 597–609.

Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T,
Björklund M, Wei G, Yan J, Niittymäki I, et al. 2009. The common
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