24 research outputs found

    VITAL, Monitoring and Control for Virus Safe Pork

    Get PDF
    VITAL is an ongoing (2008-2011) EU funded project on monitoring and control of food-borne viruses. The concept of VITAL is the integrated risk assessment and management of contamination of the European farm to market food chain by pathogenic viruses, such as norovirus and hepatitis E virus. The project’s focus is on the production and processing phase, moving away from the concept of endpoint monitoring towards input monitoring

    Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteria used as indicators for pathogenic microorganisms in water are not considered adequate as enteric virus indicators. Surface water from a tropical high-altitude system located in Mexico City that receives rainwater, treated and non-treated wastewater used for irrigation, and groundwater used for drinking, was studied.</p> <p>Methods</p> <p>The presence of enterovirus, rotavirus, astrovirus, coliphage, coliform bacteria, and enterococci was determined during annual cycles in 2001 and 2002. Enteric viruses in concentrated water samples were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Coliphages were detected using the double agar layer method. Bacteria analyses of the water samples were carried out by membrane filtration.</p> <p>Results</p> <p>The presence of viruses and bacteria in the water used for irrigation showed no relationship between current bacterial indicator detection and viral presence. Coliphages showed strong association with indicator bacteria and enterovirus, but weak association with other enteric viruses. Enterovirus and rotavirus showed significant seasonal differences in water used for irrigation, although this was not clear for astrovirus.</p> <p>Conclusion</p> <p>Coliphages proved to be adequate faecal pollution indicators for the irrigation water studied. Viral presence in this tropical high-altitude system showed a similar trend to data previously reported for temperate zones.</p

    How long do nosocomial pathogens persist on inanimate surfaces? A systematic review

    Get PDF
    BACKGROUND: Inanimate surfaces have often been described as the source for outbreaks of nosocomial infections. The aim of this review is to summarize data on the persistence of different nosocomial pathogens on inanimate surfaces. METHODS: The literature was systematically reviewed in MedLine without language restrictions. In addition, cited articles in a report were assessed and standard textbooks on the topic were reviewed. All reports with experimental evidence on the duration of persistence of a nosocomial pathogen on any type of surface were included. RESULTS: Most gram-positive bacteria, such as Enterococcus spp. (including VRE), Staphylococcus aureus (including MRSA), or Streptococcus pyogenes, survive for months on dry surfaces. Many gram-negative species, such as Acinetobacter spp., Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Serratia marcescens, or Shigella spp., can also survive for months. A few others, such as Bordetella pertussis, Haemophilus influenzae, Proteus vulgaris, or Vibrio cholerae, however, persist only for days. Mycobacteria, including Mycobacterium tuberculosis, and spore-forming bacteria, including Clostridium difficile, can also survive for months on surfaces. Candida albicans as the most important nosocomial fungal pathogen can survive up to 4 months on surfaces. Persistence of other yeasts, such as Torulopsis glabrata, was described to be similar (5 months) or shorter (Candida parapsilosis, 14 days). Most viruses from the respiratory tract, such as corona, coxsackie, influenza, SARS or rhino virus, can persist on surfaces for a few days. Viruses from the gastrointestinal tract, such as astrovirus, HAV, polio- or rota virus, persist for approximately 2 months. Blood-borne viruses, such as HBV or HIV, can persist for more than one week. Herpes viruses, such as CMV or HSV type 1 and 2, have been shown to persist from only a few hours up to 7 days. CONCLUSION: The most common nosocomial pathogens may well survive or persist on surfaces for months and can thereby be a continuous source of transmission if no regular preventive surface disinfection is performed

    VITAL, Monitoring and Control for Virus Safe Pork

    No full text
    VITAL is an ongoing (2008-2011) EU funded project on monitoring and control of food-borne viruses. The concept of VITAL is the integrated risk assessment and management of contamination of the European farm to market food chain by pathogenic viruses, such as norovirus and hepatitis E virus. The project’s focus is on the production and processing phase, moving away from the concept of endpoint monitoring towards input monitoring.</p

    Virus hazards from food, water and other contaminated environments.

    No full text
    Numerous viruses of human or animal origin can spread in the environment and infect people via water and food, mostly through ingestion and occasionally through skin contact. These viruses are released into the environment by various routes including water run-offs and aerosols. Furthermore, zoonotic viruses may infect humans exposed to contaminated surface waters. Foodstuffs of animal origin can be contaminated, and their consumption may cause human infection if the viruses are not inactivated during food processing. Molecular epidemiology and surveillance of environmental samples are necessary to elucidate the public health hazards associated with exposure to environmental viruses. Whereas monitoring of viral nucleic acids by PCR methods is relatively straightforward and well documented, detection of infectious virus particles is technically more demanding and not always possible (e.g. human norovirus or hepatitis E virus). The human pathogenic viruses that are most relevant in this context are nonenveloped and belong to the families of the Caliciviridae, Adenoviridae, Hepeviridae, Picornaviridae and Reoviridae. Sampling methods and strategies, first-choice detection methods and evaluation criteria are reviewed

    Tracing enteric viruses in the European berry fruit supply chain

    No full text
    In recent years, numerous foodborne outbreaks due to consumption of berry fruit contaminated by human enteric viruses have been reported. This European multinational study investigated possible contamination routes by monitoring the entire food chain for a panel of human and animal enteric viruses. A total of 785 samples were collected throughout the food production chain of four European countries (Czech Republic, Finland, Poland and Serbia) during two growing seasons. Samples were taken during the production phase, the processing phase, and at point-of-sale. Samples included irrigation water, animal faeces, food handlers' hand swabs, swabs from toilets on farms, from conveyor belts at processing plants, and of raspberries or strawberries at points-of-sale; all were subjected to virus analysis. The samples were analysed by real-time (reverse transcription, RT)-PCR, primarily for human adenoviruses (hAdV) to demonstrate that a route of contamination existed from infected persons to the food supply chain. The analyses also included testing for the presence of selected human (norovirus, NoV GI, NoV GII and hepatitis A virus, HAV), animal (porcine adenovirus, pAdV and bovine polyomavirus, bPyV) and zoonotic (hepatitis E virus, HEV) viruses. At berry production, hAdV was found in 9.5%, 5.8% and 9.1% of samples of irrigation water, food handlers' hands and toilets, respectively. At the processing plants, hAdV was detected in one (2.0%) swab from a food handler's hand. At point-of-sale, the prevalence of hAdV in fresh raspberries, frozen raspberries and fresh strawberries, was 0.7%, 3.2% and 2.0%, respectively. Of the human pathogenic viruses, NoV GII was detected in two (3.6%) water samples at berry production, but no HAV was detected in any of the samples. HEV-contaminated frozen raspberries were found once (2.6%). Animal faecal contamination was evidenced by positive pAdV and bPyV assay results. At berry production, one water sample contained both viruses, and at point-of-sale 5.7% and 13% of fresh and frozen berries tested positive for pAdV. At berry production hAdV was found both in irrigation water and on food handler's hands, which indicated that these may be important vehicles by which human pathogenic viruses enter the berry fruit chain. Moreover, both zoonotic and animal enteric viruses could be detected on the end products. This study gives insight into viral sources and transmission routes and emphasizes the necessity for thorough compliance with good agricultural and hygienic practice at the farms to help protect the public from viral infections. (C) 2013 Elsevier B.V. All rights reserved

    Virus hazards from food, water and other contaminated environments

    No full text
    Numerous viruses of human or animal origin can spread in the environment and infect people via water and food, mostly through ingestion and occasionally through skin contact. These viruses are released into the environment by various routes including water run-offs and aerosols. Furthermore, zoonotic viruses may infect humans exposed to contaminated surface waters. Foodstuffs of animal origin can be contaminated, and their consumption may cause human infection if the viruses are not inactivated during food processing. Molecular epidemiology and surveillance of environmental samples are necessary to elucidate the public health hazards associated with exposure to environmental viruses. Whereas monitoring of viral nucleic acids by PCR methods is relatively straightforward and well documented, detection of infectious virus particles is technically more demanding and not always possible (e.g. human norovirus or hepatitis E virus). The human pathogenic viruses that are most relevant in this context are nonenveloped and belong to the families of the Caliciviridae, Adenoviridae, Hepeviridae, Picornaviridae and Reoviridae. Sampling methods and strategies, first-choice detection methods and evaluation criteria are reviewed

    Detecção do vírus da cinomose canina por RT-PCR utilizando-se oligonucleotídeos para os genes da fosfoproteína, hemaglutinina e neuraminidase Detection of canine distemper virus by RT-PCR using oligonucleotides targeted to the phosphoprotein, hemagglutinin and neuraminidase genes

    No full text
    Empregou-se a técnica de reação em cadeia pela polimerase precedida de transcrição reversa para detecção do vírus da cinomose canina (CC). Para a padronização da técnica foram selecionados quatro pares de oligonucleotídeos (P1, P2, N1, H1), baseados em seqüências dos genes da fosfoproteína, neuraminidase e hemaglutinina, sendo utilizadas três cepas vacinais de vírus da CC como controles positivos. Foram analisadas três amostras isoladas de cães com cinomose e quatro amostras provenientes de cães com suspeita clínica de cinomose. Não houve amplificação nas amostras com suspeita clínica da doença. Os resultados obtidos com os oligonucleotídeos P1 e N1 foram superiores aos de H1. Os oligonucleotídeos P2 foram considerados inapropriados para a detecção do vírus da CC. Os amplicons obtidos com os oligonucleotídeos P1, N1 e H1 foram clivados com endonucleases de restrição, sendo os perfis das amostras virais comparados aos da amostra vacinal Lederle, utilizada como referência. Um padrão similar de restrição foi observado em todas as amostras analisadas.<br>The reverse transcription-polymerase chain reaction was used to detect canine distemper virus (CDV). Four oligonucleotide pairs were selected (P1, P2, N1, H1), based on the sequences of the phosphoprotein, hemagglutinin and nuraminidase genes for assay standardization, and three CDV vaccine strains were used as positive controls. Three viral isolates from dogs with canine distemper and four samples from animals clinically suspected of distemper were analysed. No amplification was detected in suspected samples. Results obtained by using P1 and N1 oligonucleotides were superior to those with H1 ones. P2 oligonucleotides were considered inadequate for CDV detection. Amplicons resulting from amplification of P1, N1 and H1 oligonucleotides were submitted to cleavage by restriction endonucleases and restriction patterns of viral samples were compared to that of Lederle strain used as reference. A similar restriction pattern was observed in all analysed samples

    Multicenter Collaborative Trial Evaluation of a Method for Detection of Human Adenoviruses in Berry Fruit

    No full text
    The qualitative performance characteristics of a qPCR-based method to detect human adenoviruses in raspberries were determined through a collaborative trial involving 11 European laboratories. The method incorporated a sample process control (murine norovirus) and an internal amplification control. Trial sensitivity or correct identification of 25-g raspberry samples artificially contaminated with between 5×102 and 5×104 PFU was 98.5%; the accordance and concordance were 97.0%. The positive predictive value was 94.2%. The trial specificity or percentage correct identification of non-artificially contaminated samples was 69.7%; the accordance was 80.0% and the concordance was 61.7%. The negative predictive value was 100%. Application of a method for the detection of human adenoviruses in food samples could be useful for routine monitoring for food safety management. It would help to determine if a route of contamination exists from human source to food supply chain which pathogenic viruses such as norovirus and hepatitis A virus could follow
    corecore