14 research outputs found

    Pharmacokinetics of oral and inhaled terbutaline after exercise in trained men

    Get PDF
    Aim: The aim of the study was to investigate pharmacokinetics of terbutaline after oral and inhaled administration in healthy trained male subjects in relation to doping control. Methods: Twelve healthy well-trained young men (27 ±2 years; mean ± SE) underwent two pharmacokinetic trials that compared 10 mg oral terbutaline with 4 mg inhaled dry powder terbutaline. During each trial, subjects performed 90 min of bike ergometer exercise at 65% of maximal oxygen consumption. Blood (0–4 h) and urine (0–24 h) samples were collected before and after administration of terbutaline. Samples were analyzed for concentrations of terbutaline by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Results: Pharmacokinetics differed between the two routes of administration. Serum C(max) and area under the serum concentration-time curve (AUC) were lower after oral administration compared to inhalation (C(max): 4.2 ± 0.3 vs. 8.5 ± 0.7 ng/ml, P ≤ 0.001; AUC: 422 ± 22 vs. 1308 ± 119 ng/ml × min). Urine concentrations (sum of the free drug and the glucuronide) were lower after oral administration compared to inhalation 2 h (1100 ± 204 vs. 61 ± 10 ng/ml, P ≤ 0.05) and 4 h (734 ± 110 vs. 340 ± 48 ng/ml, P ≤ 0.001) following administration, whereas concentrations were higher for oral administration than inhalation 12 h following administration (190 ± 41 vs. 399 ± 108 ng/ml, P ≤ 0.05). Urine excretion rate was lower after oral administration than inhalation the first 2 h following administration (P ≤ 0.001). Systemic bioavailability ratio between the two routes of administration was 3.8:1 (inhaled: oral; P ≤ 0.001). Conclusion: Given the higher systemic bioavailability of inhaled terbutaline compared to oral, our results indicate that it is difficult to differentiate allowed inhaled use of terbutaline from prohibited oral ingestion based on urine concentrations in doping control analysis. However given the potential performance enhancing effect of high dose terbutaline, it is essential to establish a limit on the WADA doping list

    Evaluation of uncertainty sources in the determination of testosterone in urine by calibration-based and isotope dilution quantification using ultra high performance liquid chromatography tandem mass spectrometry

    Get PDF
    Three quantification methodologies, namely calibration with internal standard (Cal-IS, non-weighted), weighted calibration with internal standard (wCal-IS) and isotope pattern deconvolution (IPD) have been used for the determination of testosterone in urine by LC-MS/MS. Uncertainty has been calculated and compared for the three methodologies through intra- and inter-laboratory reproducibility assays. IPD showed the best performance for the intra-laboratory reproducibility, with RSD and combined uncertainty values below 4% and 9% respectively. wCal-IS showed similar performance, while Cal-IS where not constant and clearly worse at the lowest concentration assayed (2 ng/mL) reaching RSD values up to 16%. The inter-laboratory assay indicated similar results although wCal-IS RSD (20%) was higher than IPD (10%) and Cal-IS get worse with RSD higher than 40% for the lowest concentration level. Uncertainty budgets calculated for the three procedures revealed that intercept and slope were the most important factors contributing to uncertainty for Cal-IS. The main factors for wCal-IS and IPD were the volumes of sample and/or standard measured.The authors acknowledge financial support from the Generalitat Valenciana (Research group of excellence Prometeo II 2014/023 and Collaborative Research on Environment and Food Safety ISIC/2012/016), as well as University Jaume I for project PB1-1B2013-55. Finally, the authors are grateful to the Serveis Centrals d'Instrumentació Científica (SCIC) of University Jaume I for using Acquity and TQD instruments

    Agreement of steroid profiles in Athlete Biological Passport residues and corresponding serum samples

    No full text
    The steroid module of the Athlete Biological Passport (ABP) is based on the analysis of six endogenous steroids in urine samples and a Bayesian statistical approach. However, the urinary steroid concentrations may be affected by confounders like microbial degradation, possible co-administration of diuretics as masking agents, insufficient conjugate hydrolysis or UGT2B17 gene polymorphisms affecting glucuronidation. Therefore, it can be helpful to use other matrices (ABP blood and serum samples) to quantify steroids and thereby support noticeable deviations in the Athlete Biological Passport, for example, abnormally increased urinary testosterone/epitestosterone (T/E) ratios. Aim of the study was to investigate the feasibility to re-use plasma obtained from athlete ABP blood samples for measuring a steroid profile. Therefore, testosterone, androstenedione, cortisol and cortisone were quantified in 36 intra-individual matching ABP blood and serum samples. The steroid levels measured in both matrices showed a high agreement indicating a good stability uninfluenced by storage temperature and duration. Our results pointed out the possibility to expand the athlete ABP blood analysis for steroid profiling

    Intestinal Metabolism of Two A-type Procyanidins Using the Pig Cecum Model: Detailed Structure Elucidation of Unknown Catabolites with Fourier Transform Mass Spectrometry (FTMS)

    No full text
    Procyanidins, as important secondary plant metabolites in fruits, berries, and beverages such as cacao and tea, are supposed to have positive health impacts, although their bioavailability is yet not clear. One important aspect for bioavailability is intestinal metabolism. The investigation of the microbial catabolism of A-type procyanidins is of great importance due to their more complex structure in comparison to B-type procyanidins. A-type procyanidins exhibit an additional ether linkage between the flavan-3-ol monomers. In this study two A-type procyanidins, procyanidin A2 and cinnamtannin B1, were incubated in the pig cecum model to mimic the degradation caused by the microbiota. Both A-type procyanidins were degraded by the microbiota. Procyanidin A2 as a dimer was degraded by about 80% and cinnamtannin B1 as a trimer by about 40% within 8 h of incubation. Hydroxylated phenolic compounds were quantified as degradation products. In addition, two yet unknown catabolites were identified, and the structures were elucidated by Fourier transform mass spectrometry

    Detection of 18-methyl steroids: case report on a forensic urine sample and corresponding dietary supplements

    No full text
    The detection of a putative 18-methyl-19-nortestosterone metabolite in a forensic bodybuilder's urine sample collected as part of a criminal proceeding has triggered a follow-up investigation. Four different dietary supplements in the possession of the suspect were examined with regard to possible precursor steroids. This led to the detection of the declared ingredient methoxydienone, which was confirmed by both, GC–MSMS and LC-HRMSMS. As neither 18-methyl-testosterone, nor 18-methyl-19-nortestosterone were detectable in the supplements, the possibility that the metabolite originates from methoxydienone was investigated. For this purpose, the metabolic fate of methoxydienone was studied in vitro using human HepG2 cells and in vivo by a single oral administration. While the 18-methyl-19-nortestosterone metabolite was not generated by HepG2 cells incubated with methoxydienone, it was observed in the urine samples collected at 2, 6, 10 and 24 h after methoxydienone administration. Moreover, the potential binding of methoxydienone as ligand to the human androgen receptor was modelled in silico in comparison with 18-methylnandrolone, for which androgen receptor activation had been shown in an in vitro approach before. In conclusion, we could ascribe the presence of the 18-methyl-19-nortestosterone metabolite in a forensic urine sample to originate from methoxydienone present in dietary supplements. Methoxydienone was observed to slowly degrade by demethylation of the methoxy substituent in liquid solutions. While no compound-specific intermediates were identified that allowed differentiation from other 18-methyl steroids, the 18-methyl-19-nortestosterone metabolite proved to be a suitable marker for reliable detection in doping analysis
    corecore