27 research outputs found

    The K2-ESPRINT Project III: A Close-in Super-Earth around a Metal-rich Mid-M Dwarf

    Get PDF
    We validate a Rp=2.32±0.24R⊕R_p=2.32\pm 0.24R_\oplus planet on a close-in orbit (P=2.260455±0.000041P=2.260455\pm 0.000041 days) around K2-28 (EPIC 206318379), a metal-rich M4-type dwarf in the Campaign 3 field of the K2 mission. Our follow-up observations included multi-band transit observations from the optical to the near infrared, low-resolution spectroscopy, and high-resolution adaptive-optics (AO) imaging. We perform a global fit to all the observed transits using a Gaussian process-based method and show that the transit depths in all passbands adopted for the ground-based transit follow-ups (r2′,zs,2,J,H,Ksr'_2, z_\mathrm{s,2}, J, H, K_\mathrm{s}) are within ∼2σ\sim 2\sigma of the K2 value. Based on a model of the background stellar population and the absence of nearby sources in our AO imaging, we estimate the probability that a background eclipsing binary could cause a false positive to be <2×10−5< 2\times 10^{-5}. We also show that K2-28 cannot have a physically associated companion of stellar type later than M4, based on the measurement of almost identical transit depths in multiple passbands. There is a low probability for a M4 dwarf companion (≈0.072−0.04+0.02\approx 0.072_{-0.04}^{+0.02}), but even if this were the case, the size of K2-28b falls within the planetary regime. K2-28b has the same radius (within 1σ1\sigma) and experiences a similar irradiation from its host star as the well-studied GJ~1214b. Given the relative brightness of K2-28 in the near infrared (mKep=14.85m_\mathrm{Kep}=14.85 mag and mH=11.03m_H=11.03 mag) and relatively deep transit (0.6−0.7%0.6-0.7\%), a comparison between the atmospheric properties of these two planets with future observations would be especially interesting.Comment: 11 pages, 9 figures, accepted to Ap

    Characterization of the K2-19 Multiple-Transiting Planetary System via High-Dispersion Spectroscopy, AO Imaging, and Transit Timing Variations

    Full text link
    K2-19 (EPIC201505350) is an interesting planetary system in which two transiting planets with radii ~ 7 REarthR_{Earth} (inner planet b) and ~ 4 REarthR_{Earth} (outer planet c) have orbits that are nearly in a 3:2 mean-motion resonance. Here, we present results of ground-based follow-up observations for the K2-19 planetary system. We have performed high-dispersion spectroscopy and high-contrast adaptive-optics imaging of the host star with the HDS and HiCIAO on the Subaru 8.2m telescope. We find that the host star is relatively old (>8 Gyr) late G-type star (TeffT_{eff} ~ 5350 K, MsM_s ~ 0.9 MSunM_{Sun}, and RsR_{s} ~ 0.9 RSunR_{Sun}). We do not find any contaminating faint objects near the host star which could be responsible for (or dilute) the transit signals. We have also conducted transit follow-up photometry for the inner planet with KeplerCam on the FLWO 1.2m telescope, TRAPPISTCAM on the TRAPPIST 0.6m telescope, and MuSCAT on the OAO 1.88m telescope. We confirm the presence of transit-timing variations, as previously reported by Armstrong and coworkers. We model the observed transit-timing variations of the inner planet using the synodic chopping formulae given by Deck & Agol (2015). We find two statistically indistinguishable solutions for which the period ratios (Pc/PbP_{c}/P_{b}) are located slightly above and below the exact 3:2 commensurability. Despite the degeneracy, we derive the orbital period of the inner planet PbP_b ~ 7.921 days and the mass of the outer planet McM_c ~ 20 MEarthM_{Earth}. Additional transit photometry (especially for the outer planet) as well as precise radial-velocity measurements would be helpful to break the degeneracy and to determine the mass of the inner planet

    Exoplanets around Low-mass Stars Unveiled by K2

    Get PDF
    We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radial velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5-10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96-33 days. For one of the planets (K2-151b) we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius RpR_p on stellar insolation and metallicity [Fe/H]. We confirm that for periods P≲2P\lesssim 2 days, planets with a radius Rp≳2 R⊕R_p\gtrsim 2\,R_\oplus are less common than planets with a radius between 1-2 R⊕\,R_\oplus. We also see a hint of the "radius valley" between 1.5 and 2 R⊕\,R_\oplus that has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources, or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: those few planets larger than about 3 R⊕R_\oplus are found around the most metal-rich M dwarfs.Comment: 29 pages, 21 figures, 6 tables, Accepted in Astronomical Journa

    THE K2-ESPRINT PROJECT. V. A SHORT-PERIOD GIANT PLANET ORBITING A SUBGIANT STAR

    Get PDF
    We report on the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b). With an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date. Such planets are rare, with only a handful of known cases. The reason for this is poorly understood but may reflect differences in planet occurrence around the relatively high-mass stars that have been surveyed, or may be the result of tidal destruction of such planets. K2-39 (EPIC 206247743) is an evolved star with a spectroscopically derived stellar radius and mass of 3.88 [subscript -0.42] [superscript +0.48] R [subscript ⊙] and 1.53[subscript-0.12] [superscript +0.13] M[subscript ⊙], respectively, and a very close-in transiting planet, with a/R [subscript asterisk]= 3.4 Radial velocity (RV) follow-up using the HARPS, FIES, and PFS instruments leads to a planetary mass of 50.3 [subscript -9.4] [superscript +9.7] M [subscript ⊙]. In combination with a radius measurement of 8.3 ± 1.1 R [subscript oplus], this results in a mean planetary density of 0.50 [subscript -0.17] [superscript +0.29] g cm [superscript -3]. We furthermore discover a long-term RV trend, which may be caused by a long-period planet or stellar companion. Because K2-39b has a short orbital period, its existence makes it seem unlikely that tidal destruction is wholly responsible for the differences in planet populations around subgiant and main-sequence stars. Future monitoring of the transits of this system may enable the detection of period decay and constrain the tidal dissipation rates of subgiant stars

    High-Contrast Imaging of Intermediate-Mass Giants with Long-Term Radial Velocity Trends

    Get PDF
    A radial velocity (RV) survey for intermediate-mass giants has been operated for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations of six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to gamma Hya B (0.61+0.12 0.14 Stellar Mass), HD 5608 B (0.10 +/- 0.01 Stellar Mass), and HD 109272 B (0.28 +/- 0.06 Stellar Mass). For the remaining targets( Dra, 18 Del, and HD 14067) we exclude companions more massive than 30-60 M(sub Jup) at projected separations of 1-7. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets Dra b, HD 5608 b, and HD 14067 b
    corecore