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ABSTRACT

A radial velocity (RV) survey for intermediate-mass giants has been operated for

over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has

revealed that some giants show long-term linear RV accelerations (RV trends), indi-

cating the presence of outer companions. Direct imaging observations can help clarify

what objects generate these RV trends. We present the results of high-contrast imag-

ing observations of six intermediate-mass giants with long-term RV trends using the

Subaru Telescope and HiCIAO camera. We detected co-moving companions to γ Hya

B (0.61+0.12
−0.14M⊙), HD 5608 B (0.10 ± 0.01M⊙), and HD 109272 B (0.28 ± 0.06M⊙).

For the remaining targets(ι Dra, 18 Del, and HD 14067) we exclude companions more

massive than 30-60 MJup at projected separations of 1′′–7′′. We examine whether these

directly imaged companions or unidentified long-period companions can account for the

RV trends observed around the six giants. We find that the Kozai mechanism can

explain the high eccentricity of the inner planets ι Dra b, HD 5608 b, and HD 14067 b.

Subject headings: binaries: general, –methods: observational, –planetary systems –

stars: individual(γ Hya, ι Dra, HD 5608, HD 14067, HD 109272), –techniques: high

angular resolution, –techniques: radial velocities

1. Introduction

The radial velocity (RV) technique has played a significant role in the search for exoplanets

and has been used in the discovery of more than 500 planets in the last 20 years. However, the

RV technique is less sensitive to wide-orbit planets with a semimajor axis larger than ∼10 AU.

To confirm the existence of such planets, it is necessary to monitor the RV variation of the host

star over an extremely long period, which is impractical. Hence, the occurrence rate of such

wide-orbit planets remains poorly examined, even though it is a critical factor for testing planet

formation/evolution theories such as core accretion (e.g., Pollack et al. 1996), gravitational disk

instability (e.g., Durisen et al. 2007), and planet migration (e.g., Kley & Nelson 2012).

The long-term RV acceleration (RV trends) of a host star is useful information for uncovering

possible planetary companions in wide orbits. If a companion exists beyond ∼10 AU from the host

star, the companion generates an almost linear trend in the RV of the host star within a relatively

29 H. L. Dodge Department of Physics & Astronomy, University of Oklahoma, 440 W Brooks St Norman, OK

73019, USA

30Astronomical Institute, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan

31Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
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short period. The slope of the trend depends on the mass and the semi-major axis of the RV trend

generator (RVTG), and we can estimate its minimum mass based on the following relation:

v̇ ∼ mp sin i
G

a2
(1)

where mp is the RVTG mass, i is the orbital inclination, G is the gravitational constant, a is the

semi-major axis of the RVTG, and v̇ is the RV trend. For example, an RV trend of 10 m/s/yr

corresponds to 5MJup, the minimum mass of the RVTG at a semi-major axis of 10 AU. However,

such an RV trend could just as easily be generated by a face-on or distant stellar companion or a

brown-dwarf companion as a planetary one. A companion with mp sin i ∼ 0.5M⊙ located at 100

AU also yields an RV trend of 10 m/s/yr for the host star. Accordingly, the detection of the RV

trend alone is not sufficient to identify the RVTG.

In contrast, direct imaging techniques are sensitive to such wide-orbit companions. Direct

imaging technique can achieve a contrast better than 10−5 at a separation of 1.′′0 from a central

star (e.g., Suzuki et al. 2010) and thus can easily identify a stellar companion. Hence, this technique

can help us to clarify the true nature of an RVTG. Even non-detection of any companions is useful

for constraining the range of the mass and semi-major axis of an RVTG by a simultaneous analysis

of the direct-imaging and RV-trend data.

One study that employs this idea, namely, combining direct imaging and the RV-trend ob-

servations, is called TaRgetting bENchmark objects with Doppler Spectroscopy (TRENDS; e.g.

Crepp et al. 2012), which attempts to detect companions around FGKM-type stars showing RV

trends. The study has discovered three low-mass stellar companions (Crepp et al. 2012), a tertiary

stellar companion (Crepp et al. 2013a), a white dwarf companion (Crepp et al. 2013b), and a T

dwarf (Crepp et al. 2014). Also, they determined the giant planet occurrence rate around M-dwarf

stars by exploring, via adaptive optics imaging, targets that exhibited an RV trend suggestive of

an exoplanet companion (Montet et al. 2014). Furthermore, this technique has revealed that stars

hosting a hot-Jupiter tend to be accompanied by a stellar companion (Knutson et al. 2014). These

results clearly show that direct imaging observations can help us to explore and identify distant

companions that generate RV trends in host stars.

At Okayama Astrophysical Observatory (OAO), an RV survey targeting intermediate-mass

giants (1.5–5 M⊙) has been conducted for over a decade (e.g., Sato et al. 2003). Sato et al. (2008)

found that there is a difference between orbits of planets around intermediate-mass stars and around

lower-mass FGK stars. Most planets around intermediate-mass stars have a semi-major axis larger

than 0.6 AU, while FGK stars have shorter-period planets. Hence, it was suggested that the orbital

distribution of exoplanets around intermediate-mass stars is different from that around solar-type

stars. In addition, the OAO survey detected long-term RV trends in several targets, which indicates

the presence of distant companions around them. The widest-orbit of planets or brown dwarfs

so far discovered is 5 AU (Sato et al. 2013a). Identifying the companions that generate the RV

trend can improve our knowledge of exoplanet populations for intermediate-mass stars, which are
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not well understood compared to solar-type stars.

To clarify the nature of the RVTGs around intermediate-mass stars observed in the OAO

RV survey, we have performed direct-imaging observations as part of the Strategic Exploration of

Exoplanets and Disks with Subaru (SEEDS; Tamura 2009) project. SEEDS has discovered stellar

companions around transiting planet systems (Narita et al. 2010, 2012; Takahashi et al. 2013),

as well as planetary companions(e.g. Kuzuhara et al. 2013). While TRENDS targeted FGKM-

type stars, our campaign has focused on intermediate-mass stars with RV trends and is therefore

complementary to TRENDS. We imaged five stellar companions around these targets, and three

companions are likely to be sources of RVTGs. In Section 2, we describe the RV and direct-imaging

observations and the data reduction. In Section 3 we present the results of the direct imaging

observations. In Section 4, we discuss the results and verify whether our imaged companions can

generate the RV trends. We also discuss the orbit evolution of inner eccentric planets based on the

Kozai mechanism. Finally, we summarize our results and discussion in Section 5.

2. Observations

RV observations at OAO have identified five intermediate-mass giants with linear RV trends.

In order to clarify the objects that cause the RV trends, we observed the five giants via direct

imaging. Apart from the OAO survey, Zechmeister et al. (2008) and Kane et al. (2010) found a

linear RV trend around another giant, ι Dra. The RVTG of ι Dra has been unclear, so we also

carried out direct imaging observations of this giant. In total, we observed six intermediate-mass

giants showing linear RV trends in the SEEDS campaign. Table 1 shows the stellar properties of

our six targets. Note that four of the targets have already known RV planets (Table 2). In this

section, we describe our Doppler measurement observations, orbital fitting analysis to the RV data,

and direct imaging observations.

2.1. Doppler measurement observations

We obtained RV data for the targets except for ι Dra with the 1.88-m telescope and the HIgh

Dispersion Echelle Spectrograph (HIDES; Izumiura 1999) at OAO between 2001 and 2014. We

used an iodine absorption cell (I2 cell; Kambe et al. 2002) for precise RV measurements, which

provides a fiducial wavelength reference in a wavelength range of 5000–5800 Å. We used the

HIDES-slit mode setting with a slit width of the spectrograph of 200 µm (0.′′76), which corresponds

to a spectral resolution (R = λ/∆λ) of 67000 by about 3.3-pixel sampling. Reduction of the echelle

data (i.e., bias subtraction, flat-fielding, scattered-light subtraction, and spectrum extraction) was
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performed using the IRAF software package1.

For precise RV analysis, we modeled I2-superposed stellar spectra (star+I2) by the method

detailed in Sato et al. (2002) and Sato et al. (2012), which is based on the method by Butler et al.

(1996) and Valenti et al. (1995). In the method, a star+I2 spectrum is modeled as a product of a

high resolution I2 and a stellar template spectrum convolved with a modeled instrumental profile

(IP) of the spectrograph. The stellar template spectrum is obtained by deconvolving a pure stellar

spectrum with an IP estimated from a B-star or flat spectrum taken through a I2 cell. We achieved a

long-term RV precision of about 4 m s−1 over the entire span of the observations. The measurement

error was derived from an ensemble of the velocities from each of the ∼300 spectral segments (each

∼3Å long) in every exposure. We show the derived RVs for 18 Del, γ Hya, and HD 109272 in Figure

1 and Figure 2, and have listed them in Table 3, Table 4, and Table 5 together with the estimated

uncertainties. The RVs for 18 Del were updated and extended from those presented in Sato et al.

(2008). The RVs for HD 5608 and HD 14067 presented in Sato et al. (2012) and Wang et al. (2014),

respectively, were used for the analysis in this paper.

2.2. Orbital fitting

After the first announcement of the discovery of a planet around 18 Del by Sato et al. (2008),

we collected 31 more epochs of RV data for the star in five years and updated its orbital parameters

including a possible linear velocity trend (∼ 4 m s−1 yr−1) suggested in Sato et al. (2008). The

updated orbital parameters and the uncertainties were derived using the Bayesian Markov Chain

Monte Carlo (MCMC) method (e.g., Ford 2005; Gregory 2005; Ford & Gregory 2007), following

the analysis in Sato et al. (2013b). An extra Gaussian noise factor representing stellar jitter for the

data and a linear velocity trend were incorporated as free parameters. We generated 10 indepen-

dent chains having 107 points with an acceptance rate of about 25%, the first 10% of which were

discarded, and confirmed that each parameter sufficiently converged based on the Gelman–Rubbin

statistic (Gelman & Rubbin 1992). We derived the median value of the merged posterior probabil-

ity distribution function (PDF) for each parameter and set the 1σ uncertainty as the range between

15.87% and 84.13% of the PDF. We plot the derived Keplerian orbit together with the RV points

and their measurement errors including the jitter in Figure 1, and list the orbital parameters and

the uncertainties in Table 6. We confirmed the linear velocity trend for the star to be γ̇ = −2.8±0.7

m s−1 yr−1 with 4σ confidence.

For γ Hya and HD 109272, we fit the linear velocity trends using the method of least squares.

The trends of our targets are summarized in Table 7.

1IRAF is distributed by the National Optical Astronomy Observatories, which is operated by the Association of

Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science Foundation,

USA.
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2.3. Direct imaging observations

Direct imaging observations were conducted from 2011 to 2014 as part of the SEEDS survey

(Tamura 2009) using the High Contrast Instrument for the Subaru Next Generation Adaptive

Optics (HiCIAO; Suzuki et al. 2010) on the 8.2-m Subaru Telescope. We used the adaptive optics

system AO188 (Hayano et al. 2008) together with HiCIAO, and the target stars themselves were

used as the natural guide stars in our observations. In addition, we used an atmospheric dispersion

corrector (ADC), which helped mitigate the drift of the stellar PSFs on the detector (Egner et al.

2010). Furthermore, the angular differential imaging (ADI) method (Marois et al. 2006) was applied

to our observations to improve the high-contrast performance. All six targets were first observed in

2011–2012 in the H-band(∼1.6 µm) and four targets that have companion candidates were followed

up in 2014 by employing J- (∼1.2 µm), H-, and Ks- (∼2.1 µm) band filters.

In order to maximize the sensitivity of our observations, it is necessary to use an occulting

mask or to saturate the central star’s PSF. Such masked or saturated images (i.e., science images)

can be taken over relatively long integration times and are used for the companion survey. However,

we require unsaturated and unmasked PSFs of the central stars (i.e., calibration images) for our

measurements of the contrast limit, central star centroid. Therefore, we made unmasked observa-

tions with neutral density (ND) filters to avoid PSF saturation for each target, selecting ND filters

of an appropriate transmission based on the central star’s brightness: HiCIAO has ND filters with

transmittances of 0.854, 0.063, and 0.016%. We obtained the unsaturated and unmasked PSFs

before and after observing the science images for each target. The observation log is summarized

in Table 8.

Our data reduction procedure is as follows. First, we removed stripe patterns (see Suzuki et al.

2010) appearing on each observed frame and subsequently corrected hot and bad pixels. Then, hot-

pixel masks were generated from dark frames obtained in each observing run.

To create hot-pixel mask, we used L.A. Cosmic algorithm (van Dokkum 2001) for the data taken

before 2012 September, while our originally-developed routine was applied to the data taken after

2014 April. Flat-fielding was performed following these procedures.

Next, we correct the distortion of the images, since the distortion correction of our observed

images is crucial to achieve reliable astrometry. To measure the distortion map, we usually obtained

images of the globular cluster M5 or M15 in each observing run. The distortion map is made by

comparing the stellar positions on the M5/M15 images taken by HiCIAO with those on the images

taken by the Hubble Space Telescope/ACS whose distortion is well-corrected (Brandt et al. 2013).

Using the measured distortion map, we applied the geometric transformations to the post-flat-

fielded frames. This procedure fixes the plate scale of images to be 9.5 mas.

We estimate the centroids of primary star in the distortion-corrected images using the unsatu-

rated data whose distortions have been also corrected, and shift the positions of central star to the

centers of arrays. Then, we assume that the stellar position on the detector did not drift. We also

calculated the stellar frame-to-frame centroids by fitting the Moffat function to the masked PSFs
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and confirmed that the PSF drifts are less than 1 pixel (= 9.5 mas) during the observations.

Next, we carried out ADI reductions after subtracting the central star’s radial profile. We

used the locally optimized combination of images (LOCI) algorithm (Lafrenière et al. 2007a), which

allows further improvement in our capability to detect faint companions. We evaluated the self-

subtraction effect caused by the LOCI algorithm by embedding artificial PSFs. To determine a

realistic detection limit, the final image was convolved with a circular aperture with a diameter

equal to the PSF FWHM (Lafrenière et al. 2007b). Finally, we checked the achieved 5σ contrast-

ratio by calculating the standard deviation within 2-pixel wide rings, from the center to the outer

region every 4.5 pixels.

3. Results

We detected five companion candidates in the four systems γ Hya, 18 Del, HD 5608, and HD

109272. Follow-up observations confirmed that three of the companion candidates in three systems,

γ Hya, HD 5608, and HD 109272, have a common proper motion. We converted the observed flux of

the companion to its mass using the NextGen model (Hauschildt et al. 1999a,b) or the Dusty model

(Chabrier et al. 2000). The model that was most consistent with regard to the derived mass for all

three bands (J-, H-, Ks-band) was adopted. The targets’ ages, excepting ι Dra, were estimated in

Takeda et al. (2008) by comparing the luminosities and effective temperatures with the theoretical

stellar evolution model (Lejeune and Schaerer 2001). We roughly estimated the age of ι Dra by

comparing its luminosity and effective temperature with a theoretical model (Bressan et al. 2012;

Chen et al. 2015)

3.1. Confirmed stellar companions

3.1.1. γ Hya

We discovered a companion candidate with an H-band contrast of ∆H = 7.24 located 1.′′6 from

γ Hya, as shown in Figure 3. Two years after the first observation, a follow-up observation enabled

us to confirm that the companion candidate, γ Hya B, shares a common proper motion with the

central star (Figure 5). Our astrometric and photometric results are shown in Table 9. Considering

γ Hya’s age (0.37 Gyr, Takeda et al. 2008) and consistency of the mass derived from J-, H-, and

Ks-band photometry, we adopted the 400-Myr NextGen model to convert the measured photometry

into mass. Mass of γ Hya B is 0.61+0.12
−0.14 M⊙ by averaging four independent mass estimates.
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3.1.2. HD 5608

We found two companion candidates around HD 5608. The first candidate has ∆H = 9.40

with a separation of 0.′′6 and the second has ∆H = 13.1 with a separation of 7.′′4, as shown in Figure

4. The time intervals of our three observations are long enough to allow for common proper motion

tests (Figure 5). We conclude that the close companion candidate HD 5608 B is co-moving and the

other companion candidate at 7.′′4 is a background star. Our astrometric and photometric results for

HD 5608 B are shown in Table 10. Considering that HD 5608 B has an age of 2.5 Gyr (Takeda et al.

2008) , we used the interpolation between the 2-Gyr and 3-Gyr Dusty models to estimate the mass

of HD 5608 B. The mass derived from Dusty is 0.106 ± 0.002 M⊙ from the weighted mean of three

observational results, and that derived from NextGen model is 0.13±0.01 M⊙. These indicate that

HD 5608 B is a low mass star, and the Dusty model is a model to reproduce the luminocity of the

low-mass stars . Thus, we adopted the interpolation between the 2-Gyr and 3-Gyr Dusty models,

and took the mass of HD 5608 B to be 0.10 ± 0.01 M⊙.

3.1.3. HD 109272

We discovered one companion candidate (∆H = 7.18) at a separation of 1.′′2 from HD 109272

(Figure 3). Follow-up observations allowed a common proper motion test for the candidate (Figure

5), which suggested that the companion candidate HD 109272 B is gravitationally bound to the

central star. Table 11 shows the astrometric and photometric results for HD 109272 B. Its mass was

calculated using the 1-Gyr Dusty model based on an age of HD 109272 B of 1.4 Gyr (Takeda et al.

2008). By averaging two mass estimates derived from two observations, we find that HD 109272

B has a mass of 0.28 ± 0.06 M⊙.

3.2. Confirmed background star

3.2.1. 18 Del

We found a faint companion candidate of ∆H = 16.9 with S/N ∼ 5 at 7.′′5 from 18 Del A

(Figure 4). In the July 2012 observation, we were not able to detect the candidate because the

exposure time was not enough to detect the candidate. We detected it again on 2014 June 10th and

we carried out a common proper motion test. The result indicates that the companion candidate

traces the track expected for a background star (Figure 5). The achieved contrast ratio is shown in

Figure 6. The detectable mass limits derived from the COND 0.8-Gyr model (Baraffe et al. 2003)

for an age of 18 Del of 0.79 Gyr (Takeda et al. 2008) is displayed in the right panel of Figure 6.

We exclude a ∼ 0.13 M⊙ object at 0.′′5, a ∼ 0.05 M⊙ object at 1.′′0, and a ∼ 0.03 M⊙ ≈ 31 MJup

object beyond 2.′′0 from the central star.
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3.3. No companion candidate detections

3.3.1. ι Dra

We were not able to detect any objects on 2012 May 14 in the H-band for ι Dra beyond

0.′′6. Figure 7 plots the PARSEC isochrone (Bressan et al. 2012) model within the range of the

uncertainty of ι Dra’s mass derived by Baines et al. (2011). The position of ι Dra in the figure

agrees with an age of 2 Gyr. Hence we use the 2-Gyr COND model (Baraffe et al. 1998) to evaluate

the detectable mass limits. Although the age estimation for iot Dra may not be accurate, we note

that there is not a big difference in the results even if the difference in the adopted age is ± 1 Gyr.

The excluded object mass range is shown in Figure 6. We exclude a ∼ 0.09 M⊙ object at 1.′′0 and

a ∼ 0.05 M⊙ ≈ 52 MJup object over 2′′.

3.3.2. HD 14067

We were not able to find any companion candidates around HD 14067. Figure 6 shows the

5σ detectable mass limit, converted using the COND 0.7-Gyr model for the age of HD 14067

(Wang et al. 2014). No objects with ∼ 0.12 M⊙ at 1.′′0 and ∼ 0.06 M⊙ beyond 2.′′0 are apparent in

the observation.

4. Discussion

4.1. RV trend generators

Combining the RV trend for the primary star with the projected separation of the detected

companions, we can calculate the minimum dynamical mass that would be required to produce the

RV trend with the following equation (Torres 1999; Liu et al. 2002):

Mdyn = 5.34 × 10−6 M⊙

(

d

pc

ρ

arcsec

)2

×
∣

∣

∣

∣

v̇

m/s/yr

∣

∣

∣

∣

F (i, e, ω, φ) (2)

where d is the distance to the target, ρ is the observed angular separation of the companion (see

also Knutson et al. 2014), and F is a function that depends on the orbital parameters (inclination

i, eccentricity e, longitude of periastron ω, and orbital phase φ) of the companion. Torres (1999)

determined that the minimum value of F (i, e, ω, φ) is 3
√

3/2. We use this equation to calculate

the minimum mass limited by the RV trend. If the mass estimated from photometry exceeds

the dynamical minimum mass derived from the RV trend, then we can conclude that a detected

companion is responsible for the observed RV trend, and if not, the companion is not responsible

for the observed RV trend. Additionally, we calculate a physical (unprojected) separation of

the detected companion from the central star, consulting Howard et al. (2010) who derived a true

separation of a stellar companion around HD 126614 by combining the companion’s estimated mass
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with the central star’s RV trend. There are two solutions for each of the three companions. As

a simplification, we do not consider projection effects on the orbit, but assume that the projected

separation is equal to the semi-major axis when comparing imaging and RV limits. As shown in

e.g. Brandeker et al. (2006), the statistical mean conversion factor between the semi-major axis and

the projected separation is close to 1 for eccentricity distributions representative of wide binaries,

which supports this approximation.

In the cases where no companion could be found, upper and lower limits for the companion

as function of semi-major axis were calculated (see Figure 8). The lower mass limit from the RV

trend is calculated from Equation 2, and the upper mass limit is set by the detectable mass limit

of the direct-imaging observation. The object that could cause the RV trend is then constrained

between these two limits.

Furthermore, the lack of curvature in a linear trend can be used to exclude the existence of

inner companions. We assume that the time span of the observations must correspond to at most

half an orbital period, or significant curvature would necessarily be seen. This sets a lower limit on

the period, and thus an inner limit on the semi-major axis of the companion.

γ Hya – With an angular separation of 1.′′623 (2012 May 13), the dynamical minimum mass of

γ Hya B is 0.25 M⊙. The mass estimated from photometry, 0.61+0.12
−0.14 M⊙, exceeds the dynamical

minimum mass. Therefore, we conclude that γ Hya B is responsible for the observed RV trend.

The physical separation is 67.5 ± 0.6 AU or 159 ± 7 AU.

HD 5608 – The dynamical minimum mass of HD 5608 B is 0.095 M⊙ (2011 Dec. 31). Our

photometric estimated mass is 0.10 ±0.01M⊙, which is consistent with the dynamical minimum

mass derived from the RV trend. We confirm that the companion is the RV trend generator. The

calculated physical separation is 40 ± 1 AU or 47 ± 3 AU.

HD 109272 – In the HD 109272 system, the dynamical minimum mass limit calculated with

the angular separation on 2012 Apr. 11 is 0.12 M⊙. The estimated mass from the photometry of

HD 109272 B is 0.28±0.06M⊙. Therefore, we conclude that HD 109272 B is the RV trend generator

for the observed RV trend in HD 109272 A. The true physical separation of HD 109272 B is 59.3

± 0.9 AU or 140 ± 6 AU.

18 Del – Mugrauer et al. (2014) reported that 18 Del A has a distant companion 18 Del B

outside the field of view of HiCIAO. The projected separation of 18 Del B is 2199 AU and its mass

is 0.19 M⊙. The dynamical minimum mass at 2199 AU is 181 M⊙. Therefore, 18 Del B cannot

be the source of the observed RV trend. The upper and lower limits for the RVTG are shown in

Figure 8. In addition, the long-term linear RV trend would excludes the existence of inner objects.

The semi-major axis range of the RVTG is a ∼ 10–50 AU. A stellar companion at wide separation

is ruled out, though a low-mass stellar companion at the inner region is possible. The minimum

mass at a = 10 AU is mp ≈ 4 MJup, so the RVTG is either a high-mass planet, a brown dwarf, or

a low-mass stellar companion.
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ι Dra – The absence of the detection of any companions around ι Dra is consistent with the

result observed by Kane et al. (2014) at 692 nm and 880 nm. An analysis combining the RV trend

and the HiCIAO result is shown in Figure 8. Considering the linear RV trend observed over a

decade (Kane et al. 2010), the possible innermost object is mp ≈ 16 MJup ata = 9 AU. On figure 8,

the intersection of the observation detectable line with the dynamical minimum line derived from

the RV trend is a ≈ 31 AU. Hence, the semi-major axis range of the RVTG is a ∼ 9–31 AU. The

mass range implies the RVTG is a brown dwarf or a stellar companion at small separation.

HD 14067 – From the observation result, we can determine limits for identifying the RVTG

for HD 14067 (Figure 8). The linear RV trend over five years excludes objects in the inner region.

The possible objects’ orbital period is 10 years at least, which means that the innermost possible

RVTG is at a = 10 AU in the HD 14067 system. The minimum dynamical mass at a = 10 AU in

the system is mp ≈ 32 MJup. On figure 8, the outermost possible RVTG is at a ≈ 49 AU, where

the detectable limit line crosses the dynamical minimum line. The dynamical minimum mass at

a ≈ 49 AU is Mp ≈ 0.74 M⊙. We can rule out a wide-orbit stellar companion, though a stellar

companion at a ∼ 10–49 AU is still possible. The RVTG for HD 14067 is a brown dwarf or a stellar

companion at a ∼ 10–49 AU.

Our high-contrast observations would exclude planetary RVTGs for five out of the six targets.

The exception, 18 Del, can be either a planet or a low-mass star. To distinguish the nature of the

RVTG of 18 Del, further RV monitoring and higher contrast imaging for the inner region using

extreme AO (e.g., SCExAO; Martinache & Guyon 2009) would be important.

Two systems, ι Dra and HD 14067, for which we cannot identify RVTGs in the high-contrast

imaging, are important. Vigan et al. (2012) reported that the frequency of brown dwarfs about

intermediate-mass stars is as low as 2.8+6.0
−0.9% at a range of separation of 5–320 AU. On the one

hand, Duchéne & Kraus (2013) reported that the orbital period distribution for intermediate-mass

multiple systems has two peaks at P ≈ 10 days and a ≈ 350 AU. In either case, the two systems

offer unique samples of brown dwarfs or low-mass stars around intermediate-mass stars. Further

high-contrast imaging observations with deeper and inner sensitivity would be important not only

to clarify the frequency of brown dwarfs and low-mass stars around intermediate-mass stars, but

also to study the planet migration of the inner eccentric planets in those systems.

4.2. Mechanism influencing the orbit of inner eccentric planets

Several studies have revealed that the formation mechanism of eccentric planets cannot be

explained by core accretion theory and Type I/II migration. The Kozai mechanism, which is a

perturbation mechanism from a distant stellar companion (e.g. Wu & Murray 2003), planet–planet

scattering (e.g. Nagasawa et al. 2008), and secular chaotic excursions (e.g. Wu & Lithwick 2010)

are promising approaches to describe eccentric planets.

Four targets have already known inner planets (Table 2). We consider the Kozai mechanism to
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explain the eccentric planets, namely a perturbation due to an outer stellar companion periodically

oscillates the eccentricity and inclination of an inner planet. The oscillation timescale of the Kozai

mechanism is calculated by

PKozai ∼
MA

mB

P 2
B

Pb,0

(

1 − e2B
)3/2

(3)

where MA is the primary star’s mass, mB is the stellar companion’s mass, PB is the period of

the companion, Pb,0 is the initial period of the planet, and eB is the eccentricity of the companion

(Holman et al. 1997).

We calculated the timescale of the Kozai mechanism for the significantly high eccentricity

planets ι Dra b, HD 5608 b, and HD 14067 b. For ι Dra b, we assume that its companion has a

mass of 0.18 M⊙ and in a circular orbit at 31 AU, which is the maximum mass and separation. We

then assume that the initial period of the planet is equal to that of a circular orbit of the observed

semi-major axis. The timescale is PKozai ∼ 107 kyr, which is much less than the Gyr order of ι

Dra’s age. The timescale for HD 5608 b, assuming the circular orbit of HD 5608 B, is PKozai ∼ 450

kyr or 277 kyr. The timescale for HD 14067 b is PKozai ∼ 30 kyr with the 0.74 M⊙ object at 49

AU. These timescales are also sufficiently shorter than the system’s age. It follows from equation

(3) that if the planets have migrated inward from an initially wider separation, then the initial

Kozai timescales would be even shorter. Therefore, we conclude that the Kozai mechanism could

be a plausible explanation for the eccentricity of the planets ι Dra b, HD 5608 b, and HD 14067 b.

We note that an alternative mechanism for producing high eccentricities is planet-planet scattering

(e.g. Nagasawa et al. 2008). This possibility can be tested by continuing RV and direct imaging

observations, in order to search for additional planets in the systems, as well as providing improved

constraints for the orbits of the imaged companions.

5. Conclusion

We present direct-imaging results of intermediate-mass stars with long-term RV trends that

indicate the existence of an outer object. We used the HiCIAO/Subaru Telescope to identify the

objects responsible for the observed RV trends. Our observations revealed that the three evolved

intermediate-mass stars γ Hya, HD 5608, and HD 109272 possess the stellar companions γ Hya B,

HD 5608 B, and HD 109272 B, respectively. We also ruled out the presence of stellar companions

and brown dwarfs for separations from 1′′ to 7′′ for ι Dra, 18 Del, and HD 14067.

We have constrained the nature of the RVTGs around each of the six targets. The detected

companions γ Hya B, HD 5608 B, and HD 109272 B exceed the minimum dynamical mass derived

from the combination of RV and direct imaging observations. We confirm that these companions

are responsible for the observed RV trends. We also calculated the upper and lower limits of the

mass and the semi-major axis for the RVTGs of ι Dra, 18 Del, and HD 14067. These RVTGs are

promising candidates for hosting brown dwarfs or possibly low-mass stellar companions.
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The existence of the companions around eccentric planet systems suggests that the Kozai

mechanism is a plausible explanation for the eccentricity. For the three eccentric planet systems,

ι Dra b, HD 5608 b, and HD 14067 b, the Kozai oscillation timescales are significantly shorter

than their age, and thus the Kozai mechanism is a plausible explanation for the eccentricity of the

planets.
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Table 1. Stellar properties of targets

Property γ Hya ι Dra 18 Del HD 5608 HD 14067 HD 109272

Other name HD 115659 HD 137759 HD 199665 HR 275 HR 665 HR 4779

R.A. (J2000) a 13:18:55.297 15:24:55.775 20:58:25.934 00:58:14.219 02:17:10.440 12:33:34.258

Dec. (J2000) a -23:10:17.45 +58:57:57.83 +10:50:21.43 +33:57:03.18 +23:46:04.18 -12:49:48.73

J (mag) b 1.519 ± 0.278 1.293 ± 0.220 · · · · · · 4.718 ± 0.037 4.151 ± 0.280

H (mag) b 1.065 ± 0.266 0.724 ± 0.146 3.44 ± 0.08 3.89 ± 0.05 4.448 ± 0.220 3.616 ± 0.226

K (mag) b 1.024 ± 0.300 0.671 ± 0.200 · · · · · · 4.097 ± 0.036 3.600 ± 0.250

Distance (pc) c 41.0 ± 0.2 31.0 ± 0.1 75 ± 1 56 ± 1 163 ± 13 49.3 ± 0.8

µα (mas/yr) a 68.99 ± 0.17 -8.36 ± 0.08 -48.75 ± 0.33 34.98 ± 0.40 -32.57 ± 0.48 -17.64 ± 0.28

µδ (mas/yr) a -41.85 ± 0.09 17.08 ± 0.10 -34.43 ± 0.17 -71.87 ± 0.20 -42.21 ± 0.44 52.09 ± 0.19

Mass (M⊙) 2.94 +0.03
−0.06

d 1.82 ± 0.23 e 2.25 +0.05
−0.06

d 1.55 ± 0.11 d 2.4 ±0.2 f 1.79 ± 0.11 d

Sp. type G8III K2III G6III K0IV G9III G8III/IV

[Fe/H] -0.04 ± 0.04 d 0.07 ± 0.08 g -0.05 ± 0.04 d 0.06 ± 0.05 d -0.10 ± 0.08 f -0.26 ± 0.02 d

Teff (K) 5019 ± 20 d 4545 ± 110 e 4985 ± 18 d 4854 ± 25 d 4815 ± 100 f 5104 ± 10 d

Age (Gyr) 0.37 +0.03
−0.01

d · · · 0.79 ± 0.05 d 2.5 +1.4
−1.0

d 0.69 ± 0.20 f 1.4 +0.3
−0.1

d

aRefined data reduction of Hipparcos (van Leeuwen 2007)

bCalibrated by stdstar in this work

cThe parallax-based distance from Hipparcos uses van Leeuwen (2007)

dTakeda et al. (2008)

eBaines et al. (2011)

fWang et al. (2014)

gda Silva et al. (2011)
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Table 2. Summary of known planets

Name Minimum planetary mass (MJup ) Period (days) Semi-major axis (AU) Eccentricity Periastron separation (AU) Stellar companion?

ι Dra b 12 ± 1.1 a 510.72 ± 0.07 b 1.27 b 0.713 ± 0.008 b 0.36 No c,d

18 Del b 10.3 e 993.3 ± 3.2 e 2.6 e 0.08 ± 0.01 e 2.4 Yes f

HD 5608 b 1.4 g 792.6 ± 7.7 g 1.9 g 0.190 ± 0.061 g 1.5 Yes d

HD 14067 b 7.8 ± 0.7 h 1455 +13
−12

h 3.4 ± 0.1 h 0.533 +0.043
−0.047

h 1.6 No d

aBaines et al. (2011)

bKane et al. (2010)

cKane et al. (2014)

dThis work

eSato et al. (2008)

fMugrauer et al. (2014)

gSato et al. (2012)

hWang et al. (2014)
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Table 3. Updated radial velocities for 18 Del

JD-2450000 Velocity (m s−1) Uncertainty (m s−1)

2489.14222 11.13 4.30

2507.12660 −30.85 4.42

2541.12604 −54.77 4.08

2857.13560 −40.08 5.34

2896.04035 −16.81 4.88

2927.05176 −6.01 4.10

2974.90124 22.45 4.09

2994.89777 49.79 4.78

3005.89596 46.26 7.87

3008.88731 46.14 5.59

3077.34500 98.80 6.63

3100.29135 94.18 5.30

3131.31381 100.95 5.69

3201.11623 155.35 4.39

3246.10685 114.78 4.12

3249.10725 110.37 3.93

3284.92436 101.52 5.12

3289.95478 109.83 4.31

3305.92236 84.59 3.59

3310.94725 77.87 3.65

3331.91858 77.27 3.79

3334.87618 80.06 3.82

3340.00938 64.08 5.15

3362.87668 77.89 3.96

3364.90638 86.57 4.58

3428.37046 41.14 5.49

3448.34315 −5.99 5.47

3470.31682 −31.43 11.74

3474.31881 −38.64 5.88

3495.26235 −51.75 6.41

3520.29312 −40.30 4.72

3525.28825 −43.20 11.55

3527.29963 −46.68 8.18

3576.98990 −104.36 8.66

3579.13224 −110.44 6.20

3600.04881 −111.32 9.58

3635.09840 −99.09 4.66

3655.94667 −121.89 3.65

3692.90100 −124.49 3.79

3719.92105 −124.78 4.05

3726.87981 −130.32 4.52

3740.88187 −118.68 5.81

3815.34344 −87.89 5.75

3833.33315 −80.06 5.88

3853.29087 −61.78 6.74

3890.21908 −39.35 8.24
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Table 3—Continued

JD-2450000 Velocity (m s−1) Uncertainty (m s−1)

3938.27152 2.55 4.23

3962.21118 17.32 4.63

4018.04395 59.08 3.89

4048.99644 63.22 4.51

4088.89931 93.57 3.92

4195.31850 98.01 4.63

4216.31524 104.88 5.73

4254.23118 118.57 4.91

4261.26613 109.80 4.31

4305.15291 83.07 4.24

4338.05996 45.84 4.23

4378.14307 22.67 6.86

4415.97059 20.46 4.46

4460.92172 −51.46 4.12

4558.32454 −95.51 5.34

4587.31328 −98.00 10.00

4588.29756 −107.60 5.06

4624.27152 −135.11 4.90

4672.10848 −140.78 3.88

4703.11346 −117.89 10.70

4704.04561 −115.06 4.12

4756.08274 −94.94 4.24

4756.97318 −88.86 3.75

4800.91327 −96.02 4.06

4817.95988 −87.37 5.64

4818.93093 −83.47 4.67

4983.24038 36.22 4.44

5036.17085 125.72 6.51

5107.94026 98.37 5.12

5137.05576 99.34 4.42

5165.89151 126.77 3.62

5350.30105 47.36 3.99

5470.95791 −74.04 4.13

5787.12587 −104.19 4.77

6142.20352 107.85 4.31

6162.07563 101.40 4.15
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Table 4. Radial velocities of γ Hya

JD-2450000 RV (m/s) Uncertainty (m/s)

2312.29897 −16.90 3.73

2340.27905 −23.01 5.83

2655.33897 −2.80 4.79

2680.31050 −13.40 2.79

2736.13727 −6.16 5.32

2783.04181 −21.85 6.33

3053.24088 −23.57 4.28

3408.29633 −12.93 2.75

3812.23474 1.61 7.14

3812.26327 −1.59 4.99

4110.36057 −5.55 3.36

4492.39610 8.25 4.79

4525.24386 4.18 4.81

4863.38961 2.64 3.81

5204.39491 11.04 2.90

5347.97797 16.89 4.98

5583.37648 29.79 3.17

5614.30154 3.61 4.12

5661.12157 25.34 4.59

5923.40131 18.42 4.85
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Table 5. Radial velocities of HD 109272

JD-2450000 RV (m/s) Uncertainty (m/s)

1963.20405 −11.23 5.91

1965.23360 −10.55 6.02

1966.14126 −4.85 5.57

1966.16086 −10.29 5.89

2016.16054 −9.43 6.69

2036.08305 −12.20 5.66

2043.06174 −18.89 4.92

2272.32149 −0.35 4.55

2337.24699 4.10 5.95

2424.02042 −6.80 7.09

2653.28434 0.07 5.06

2707.27045 −4.56 11.29

2710.20140 −12.54 5.40

3113.12341 2.77 6.29

3367.24880 −13.43 7.43

3812.18616 −5.59 5.13

4093.38219 −0.36 4.38

4495.29519 12.62 5.38

4884.20448 1.40 4.35

5234.24683 16.30 5.19

5350.01752 12.53 4.95

5556.32922 15.21 5.02

5626.20043 10.42 4.46

5663.12343 28.28 5.04

5977.23234 16.95 4.75
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Table 6. Updated orbital parameters for 18 Del

Parameter 18 Del b

P (days) 982.2 ± 3.4

K1 (m s−1) 121.7 ± 2.2

e 0.016+0.017
−0.011

ω (deg) −210+84
−73

Tp (JD−2450000) −310+230
−200

a1 sin i (10−3 AU) 10.98 ± 0.20

f1(m) (10−7 M⊙) 1.83+0.10
−0.097

m2 sin i (MJup) 10.2

a (AU) 2.5

jitter (m s−1) 12.9+1.3
−1.2

γ̇ (m s−1 yr−1) −2.8 ± 0.7

Nobs 82

RMS (m s−1) 13.4

Table 7. RV trends of our targets

Name γ̇ (m/s/yr)

γ Hya 4.1 ± 0.2 This work

ι Dra −13.65 ± 0.75 Kane et al. (2010)

18 Del −2.8 ± 0.7 This work

HD 5608 −5.51 ± 0.45 Sato et al. (2012)

HD 14067 −22.4 ± 2.2 Wang et al. (2014)

HD 109272 2.4 ± 0.2 This work
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Table 8: Summary of observation log

Target Obs. date (UT) Band Total ET (s) Rotation angle Mask (′′) Notes

γ Hya 2012 May 13 H 585 10.3 0.6

2014 Apr. 25 J 150 3.0 · · · cloudy

2014 Apr. 25 H 148.5 2.8 · · · cloudy

2014 Apr. 25 Ks 75 2.4 · · · cloudy

ι Dra 2012 May 14 H 675 12.0 0.6 cloudy

18 Del 2011 Aug. 2 H 585 27.7 0.4

2012 Jul. 8 H 480 20.7 0.4

2014 Jun. 10 H 575 31.7 · · ·
HD 5608 2011 Dec. 31 H 570 30.8 0.4

2012 Sep. 12 H 966 28.1 0.6

2014 Oct. 7 H 600 31.5 · · · cloudy

HD 14067 2012 Nov. 5 H 1600 89.3 0.4

HD 109272 2012 Apr. 11 H 450 10.8 0.4

2014 Apr. 23 J 195 4.8 · · ·
2014 Apr. 23 H 147 3.6 · · ·
2014 Apr. 23 Ks 165 1.0 · · ·

Table 9. Astrometric and photometric results for γ Hya B

Name Date (UT) Filter Sep. (′′) P.A. (deg) ∆mag Mass (M⊙)

γ Hya B 2012 May 13 H 1.623 ± 0.011 194.4 ± 0.2 7.24 ± 0.08 0.63 ± 0.06

2014 Apr. 25 J 1.611 ± 0.004 195.2 ± 0.2 7.97 ± 0.24 0.53 ± 0.14

2014 Apr. 25 H 1.611 ± 0.004 195.2 ± 0.2 7.39 ± 0.20 0.61 ± 0.12

2014 Apr. 25 Ks 1.626 ± 0.006 195.3 ± 0.1 7.07 ± 0.30 0.65 ± 0.21

Table 10. Astrometric and photometric results for HD 5608 B

Name Date (UT) Filter Sep. (′′) P.A. (deg) ∆mag Mass (M⊙)

HD 5608 B 2011 Dec. 31 H 0.627 ± 0.009 58.9 ± 0.4 9.40 ± 0.11 0.11 ± 0.02

2012 Sep. 12 H 0.627 ± 0.022 59.9 ± 1.0 9.70 ± 0.10 0.10 ± 0.02

2014 Oct. 7 H 0.588 ± 0.012 55.7 ± 0.6 9.55 ± 0.20 0.11 ± 0.02
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Table 11. Astrometric and photometric results for HD 109272 B

Name Date (UT) Filter Sep. (′′) P.A. (deg) ∆mag Mass (M⊙)

HD 109272 B 2012 Apr. 11 H 1.187 ± 0.005 53.0 ± 0.2 7.18 ± 0.14 0.30 ± 0.04

2014 Apr. 23 J 1.168 ± 0.004 52.0 ± 0.1 7.36 ± 0.33 0.28 ± 0.06

2014 Apr. 23 H 1.166 ± 0.004 52.2 ± 0.1 7.22 ± 0.28 0.30 ± 0.09

2014 Apr. 23 Ks 1.170 ± 0.006 52.0 ± 0.1 7.40 ± 0.16 0.24 ± 0.04

Fig. 1.— Radial velocities of 18 Del observed at OAO. The nearly circular Keplerian orbit with a

linear velocity trend (γ̇ = −2.8 m s−1 yr−1) is shown by the solid line. The error bar for each point

includes the estimated stellar jitter (12.9 m s−1). Bottom: Residuals to the orbital fit. The RMS

to the fit is 13.4 m s−1.
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Fig. 2.— Measured RV data of the two systems γ Hya (left) and HD 109272 (right). The dashed

lines show the best-fit linear trends.
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Fig. 3.— Detected bright companions from HiCIAO observations. (a) Final image of γ Hya in the

H-band taken on 2012 May 13. North is up and east is left. The companion was detected at 1.′′6

from γ Hya. (b) Final image of HD 109272 in the H-band taken on 2012 April 11. The companion

candidate at 1.′′2 can be seen in the figure.
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Fig. 4.— Images of faint companion and background stars detected by HiCIAO observations for

HD 5608 and 18 Del. S/N map for each target is also shown to help to see a faint companion

candidate, which is difficult to see on the panel (a) or (d). (a) Final image of HD 5608 in the

H-band taken on 2011 December 31. (b) S/N map of HD 5608 at H-band showing faint companion

candidates. Two companion candidates can be distinguished from the noise. A close faint compan-

ion candidate can be seen 0.6 from the central star. A distant companion candidate is detected 7.4

from the central star. (c) Closed-up S/N map showing the inner candidate of HD 5608. (d) Final

image of 18 Del in the H-band taken on 2011 August 2. (e) S/N map of 18 Del at H-band showing

a faint companion candidate.
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Fig. 5.— Results of the common proper motion test for the companion candidates. The horizontal

and vertical axes are relative distances from the first observation point. In each plot the circle with

a green cross is the first observed position with error, the triangle with a red cross represents the

second observed position, and the square with a cyan cross represents the third observed position.

The blue dotted line represents the track of background star motion driven by the stellar parallax

and the proper motion of each star. The blue crosses shows the positions of the observational data

if the companion candidate is a background star.
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Fig. 6.— Left: Achieved 5σ contrast ratio on 2011 Aug. 2 for 18 Del in the H-band, 2012 May 14

for ι Dra in the H-band, and 1012 Nov. 5 for HD 14067 in the H-band. Right: Detectable mass

limits for 18 Del, ι Dra, and HD 14067.
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Fig. 7.— PARSEC (Bressan et al. 2012) isochrone plot, effective temperature Teff vs. luminosity.

The green dot with error bars is the measured value for ι Dra, which clearly agrees with the 2-Gyr

PARSEC isochrone model.
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Fig. 8.— Combined analysis from the RV trend and direct imaging data for 18 Del, ι Dra, and

HD 14067. The green line is the dynamical minimum mass derived from the observed RV trend,

the blue dash line is the detectable mass limit from HiCIAO observation, and the red dot-and-dash

line is the limit from the observational period of the RV observations.
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