141 research outputs found

    Metatranscriptome analyses indicate resource partitioning between diatoms in the field

    Get PDF
    Diverse communities of marine phytoplankton carry out half of global primary production. The vast diversity of the phytoplankton has long perplexed ecologists because these organisms coexist in an isotropic environment while competing for the same basic resources (e.g., inorganic nutrients). Differential niche partitioning of resources is one hypothesis to explain this “paradox of the plankton,” but it is difficult to quantify and track variation in phytoplankton metabolism in situ. Here, we use quantitative metatranscriptome analyses to examine pathways of nitrogen (N) and phosphorus (P) metabolism in diatoms that cooccur regularly in an estuary on the east coast of the United States (Narragansett Bay). Expression of known N and P metabolic pathways varied between diatoms, indicating apparent differences in resource utilization capacity that may prevent direct competition. Nutrient amendment incubations skewed N/P ratios, elucidating nutrient-responsive patterns of expression and facilitating a quantitative comparison between diatoms. The resource-responsive (RR) gene sets deviated in composition from the metabolic profile of the organism, being enriched in genes associated with N and P metabolism. Expression of the RR gene set varied over time and differed significantly between diatoms, resulting in opposite transcriptional responses to the same environment. Apparent differences in metabolic capacity and the expression of that capacity in the environment suggest that diatom-specific resource partitioning was occurring in Narragansett Bay. This high-resolution approach highlights the molecular underpinnings of diatom resource utilization and how cooccurring diatoms adjust their cellular physiology to partition their niche space.American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    Variability approaching the thermal limits can drive diatom community dynamics

    Get PDF
    Organismal distributions are largely mediated by temperature, suggesting thermal trait variability plays a key role in defining species\u27 niches. We employed a trait‐based approach to better understand how inter‐ and intraspecific thermal trait variability could explain diatom community dynamics using 24 strains from 5 species in the diatom genusSkeletonema, isolated from Narragansett Bay (NBay), where this genus can comprise up to 99% of the microplankton. Strain‐specific thermal reaction norms were generated using growth rates obtained at temperatures ranging from −2°C to 36°C. Comparison of thermal reaction norms revealed inter‐ and intraspecific similarities in the thermal optima, but significant differences approaching the thermal limits. Cellular elemental composition was determined for two thermally differentiated species and again, the most variation occurred approaching the thermal limits. To determine the potential impact of interspecific variability on community composition, a species succession model was formulated utilizing each species\u27 empirically determined thermal reaction norm and historical temperature data from NBay. Seasonal succession in the modeled community resembled the timing of species occurrence in the field, but not species\u27 relative abundance. The model correctly predicted the timing of the dominant winter–spring species, Skeletonema marinoi, within 0–14 d of its observed peak occurrence in the field. Interspecific variability approaching the thermal limits provides an alternative mechanism for temporal diatom succession, leads to altered cellular elemental composition, and thus has the potential to influence carbon flux and nutrient cycling, suggesting that growth approaching the thermal limits be incorporated into both empirical and modeling efforts in the future

    Marine Phytoplankton Functional Types Exhibit Diverse Responses to Thermal Change

    Get PDF
    Marine phytoplankton generate half of global primary production, making them essential to ecosystem functioning and biogeochemical cycling. Though phytoplankton are phylogenetically diverse, studies rarely designate unique thermal traits to different taxa, resulting in coarse representations of phytoplankton thermal responses. Here we assessed phytoplankton functional responses to temperature using empirically derived thermal growth rates from four principal contributors to marine productivity: diatoms, dinoflagellates, cyanobacteria, and coccolithophores. Using modeled sea surface temperatures for 1950-1970 and 2080-2100, we explored potential alterations to each group\u27s growth rates and geographical distribution under a future climate change scenario. Contrary to the commonly applied Eppley formulation, our data suggest phytoplankton functional types may be characterized by different temperature coefficients (Q(10)), growth maxima thermal dependencies, and thermal ranges which would drive dissimilar responses to each degree of temperature change. These differences, when applied in response to global simulations of future temperature, result in taxon-specific projections of growth and geographic distribution, with low-latitude coccolithophores facing considerable decreases and cyanobacteria substantial increases in growth rates. These results suggest that the singular effect of changing temperature may alter phytoplankton global community structure, owing to the significant variability in thermal response between phytoplankton functional types. Phytoplankton communities are important players in biogeochemical processes, but are sensitive to global warming. Here, a meta-analysis shows how the varied responses of phytoplankton to rising temperatures could potentially alter growth dynamics and community structure in a future ocean

    Transcriptomic Response to Feeding and Starvation in a Herbivorous Dinoflagellate

    Get PDF
    Grazing by heterotrophic protists influences plankton population dynamics, community composition, and the flux of carbon through marine planktonic food webs. To gain insight into the molecular underpinnings of grazing in dinoflagellates, a group of important heterotrophic protists, we used a RNA-Seq approach to investigate the transcriptomic response of Oxyrrhis marina under fed and starved conditions with three different phytoplankton prey (Isochrysis galbana and two strains of Heterosigma akashiwo). In response to fed and starved conditions, 1,576 transcripts were significantly differentially expressed in O. marina. Fed O. marina cells upregulated transcripts involved in the synthesis of essential fatty acids and storage carbohydrates suggesting that the predator was food satiated and excess glucose was being stored as an energy reserve. Transcripts encoding voltage-gated ion channels were also upregulated during grazing, and they are known to be involved in the detection of mechanical stimuli and the regulation of swimming behavior in several eukaryotic protists. Fed O. marina cells upregulated kinases, which can dictate cell shape changes and may be associated with phagocytosis. During starvation, upregulated O. marina transcripts included those involved in the degradation of energy-storage molecules like glucan 1,4-alpha-glycosidase and those involved in antioxidant activities and autophagy, like acid ceramidase that are associated with the digestion of polar lipids present in cell membranes. Starved O. marina also upregulated transcripts with high similarity to proton pumping proteorhodopsins suggesting that this heterotrophic protist may supplement its energy requirement during starvation with a light harvesting mechanism. Although herbivorous grazing is a pivotal transformation in the C cycle, logistical constraints limit our investigations of environmental and biological drivers. The molecular signals identified here provide new insights into the metabolic regulation of feeding and starvation in marine heterotrophic protists and can fuel hypothesis-driven research into predators’ metabolic response to prey availability

    Identifying reference genes with stable expression from high throughput sequence data

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 3 (2012): 385, doi:10.3389/fmicb.2012.00385.Genes that are constitutively expressed across multiple environmental stimuli are crucial to quantifying differentially expressed genes, particularly when employing quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assays. However, the identification of these potential reference genes in non-model organisms is challenging and is often guided by expression patterns in distantly related organisms. Here, transcriptome datasets from the diatom Thalassiosira pseudonana grown under replete, phosphorus-limited, iron-limited, and phosphorus and iron co-limited nutrient regimes were analyzed through literature-based searches for homologous reference genes, k-means clustering, and analysis of sequence counts (ASC) to identify putative reference genes. A total of 9759 genes were identified and screened for stable expression. Literature-based searches surveyed 18 generally accepted reference genes, revealing 101 homologs in T. pseudonana with variable expression and a wide range of mean tags per million. k-means analysis parsed the whole transcriptome into 15 clusters. The two most stable clusters contained 709 genes, but still had distinct patterns in expression. ASC analyses identified 179 genes that were stably expressed (posterior probability < 0.1 for 1.25 fold change). Genes known to have a stable expression pattern across the test treatments, like actin, were identified in this pool of 179 candidate genes. ASC can be employed on data without biological replicates and was more robust than the k-means approach in isolating genes with stable expression. The intersection of the genes identified through ASC with commonly used reference genes from the literature suggests that actin and ubiquitin ligase may be useful reference genes for T. pseudonana and potentially other diatoms. With the wealth of transcriptome sequence data becoming available, ASC can be easily applied to transcriptome datasets from other phytoplankton to identify reference genes.This research was funded by the National Science Foundation grant #OCE-0723667 (to Sonya T. Dyhrman, Mak A. Saito, Bethany D. Jenkins, and Tatiana A. Rynearson). Harriet Alexander is funded under a National Defense Science and Engineering Graduate (NDSEG) Fellowship

    Temporal and Spatial Scales of Correlation in Marine Phytoplankton Communities

    Get PDF
    Ocean circulation shapes marine phytoplankton communities by setting environmental conditions and dispersing organisms. In addition, processes acting on the water column (e.g., heat fluxes and mixing) affect the community structure by modulating environmental variables that determine in situ growth and loss rates. Understanding the scales over which phytoplankton communities vary in time and space is key to elucidate the relative contributions of local processes and ocean circulation on phytoplankton distributions. Using a global ocean ecosystem model, we quantify temporal and spatial correlation scales for phytoplankton phenotypes with diverse functional traits and cell sizes. Through this analysis, we address these questions: (1) Over what timescales do perturbations in phytoplankton populations persist? and (2) over what distances are variations in phytoplankton populations synchronous? We find that correlation timescales are short in regions of strong currents, such as the Gulf Stream and Antarctic Circumpolar Current. Conversely, in the subtropical gyres, phytoplankton population anomalies persist for relatively long periods. Spatial correlation length scales are elongated near ocean fronts and narrow boundary currents, reflecting flow paths and frontal patterns. In contrast, we find nearly isotropic spatial correlation fields where current speeds are small, or where mixing acts roughly equally in all directions. Phytoplankton timescales and length scales also vary coherently with phytoplankton body size. In addition to aiding understanding of phytoplankton population dynamics, our results provide global insights to guide the design of biological ocean observing networks and to better interpret data collected at long-term monitoring stations

    Experimental evolution gone wild

    Get PDF
    Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change

    High Genetic Diversity and Fine-Scale Spatial Structure in the Marine Flagellate Oxyrrhis marina (Dinophyceae) Uncovered by Microsatellite Loci

    Get PDF
    Free-living marine protists are often assumed to be broadly distributed and genetically homogeneous on large spatial scales. However, an increasing application of highly polymorphic genetic markers (e.g., microsatellites) has provided evidence for high genetic diversity and population structuring on small spatial scales in many free-living protists. Here we characterise a panel of new microsatellite markers for the common marine flagellate Oxyrrhis marina. Nine microsatellite loci were used to assess genotypic diversity at two spatial scales by genotyping 200 isolates of O. marina from 6 broad geographic regions around Great Britain and Ireland; in one region, a single 2 km shore line was sampled intensively to assess fine-scale genetic diversity. Microsatellite loci resolved between 1–6 and 7–23 distinct alleles per region in the least and most variable loci respectively, with corresponding variation in expected heterozygosities (He) of 0.00–0.30 and 0.81–0.93. Across the dataset, genotypic diversity was high with 183 genotypes detected from 200 isolates. Bayesian analysis of population structure supported two model populations. One population was distributed across all sampled regions; the other was confined to the intensively sampled shore, and thus two distinct populations co-occurred at this site. Whilst model-based analysis inferred a single UK-wide population, pairwise regional FST values indicated weak to moderate population sub-division (0.01–0.12), but no clear correlation between spatial and genetic distance was evident. Data presented in this study highlight extensive genetic diversity for O. marina; however, it remains a substantial challenge to uncover the mechanisms that drive genetic diversity in free-living microorganisms

    The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e33768, doi:10.1371/journal.pone.0033768.Phosphorus (P) is a critical driver of phytoplankton growth and ecosystem function in the ocean. Diatoms are an abundant class of marine phytoplankton that are responsible for significant amounts of primary production. With the control they exert on the oceanic carbon cycle, there have been a number of studies focused on how diatoms respond to limiting macro and micronutrients such as iron and nitrogen. However, diatom physiological responses to P deficiency are poorly understood. Here, we couple deep sequencing of transcript tags and quantitative proteomics to analyze the diatom Thalassiosira pseudonana grown under P-replete and P-deficient conditions. A total of 318 transcripts were differentially regulated with a false discovery rate of <0.05, and a total of 136 proteins were differentially abundant (p<0.05). Significant changes in the abundance of transcripts and proteins were observed and coordinated for multiple biochemical pathways, including glycolysis and translation. Patterns in transcript and protein abundance were also linked to physiological changes in cellular P distributions, and enzyme activities. These data demonstrate that diatom P deficiency results in changes in cellular P allocation through polyphosphate production, increased P transport, a switch to utilization of dissolved organic P through increased production of metalloenzymes, and a remodeling of the cell surface through production of sulfolipids. Together, these findings reveal that T. pseudonana has evolved a sophisticated response to P deficiency involving multiple biochemical strategies that are likely critical to its ability to respond to variations in environmental P availability.This research was supported by the National Science Foundation (NSF) Environmental Genomics and NSF Biological Oceanography Program through grant OCE-0723667 to Dr. Dyhrman, Dr. Jenkins, Dr. Saito, and Dr. Rynearson, the NSF Chemical Oceanography Program through grant OCE-0549794 to Dr. Dyhrman and OCE-0526800 to Dr. Jenkins, the G. B. Moore Foundation and OCE-0752291 to Dr. Saito, NSF-EPSCoR (NSF-0554548 & NSF-1004057) to the University of Rhode Island, the Center for Microbial Oceanography: Research and Education, and the Joint Genome Institute/DOE Community Sequencing Program (CSP795793) to Dr. Jenkins, Dr. Dyhrman, Dr. Rynearson and Dr. Saito

    Coccolithophores: Functional Biodiversity, Enzymes and Bioprospecting

    Get PDF
    Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an ‘in house’ enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase
    corecore