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Diverse communities of marine phytoplankton carry out half of
global primary production. The vast diversity of the phytoplank-
ton has long perplexed ecologists because these organisms coexist
in an isotropic environment while competing for the same basic
resources (e.g., inorganic nutrients). Differential niche partitioning
of resources is one hypothesis to explain this “paradox of the
plankton,” but it is difficult to quantify and track variation in phy-
toplankton metabolism in situ. Here, we use quantitative meta-
transcriptome analyses to examine pathways of nitrogen (N) and
phosphorus (P) metabolism in diatoms that cooccur regularly in an
estuary on the east coast of the United States (Narragansett Bay).
Expression of known N and P metabolic pathways varied between
diatoms, indicating apparent differences in resource utilization ca-
pacity that may prevent direct competition. Nutrient amendment
incubations skewed N/P ratios, elucidating nutrient-responsive
patterns of expression and facilitating a quantitative comparison
between diatoms. The resource-responsive (RR) gene sets deviated
in composition from the metabolic profile of the organism, being
enriched in genes associated with N and P metabolism. Expression
of the RR gene set varied over time and differed significantly be-
tween diatoms, resulting in opposite transcriptional responses to
the same environment. Apparent differences in metabolic capacity
and the expression of that capacity in the environment suggest that
diatom-specific resource partitioning was occurring in Narragansett
Bay. This high-resolution approach highlights the molecular under-
pinnings of diatom resource utilization and how cooccurring diatoms
adjust their cellular physiology to partition their niche space.
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The stability and primary productivity of ecosystems have long
been linked to the diversity of primary producers (1, 2). This

linkage is well documented in terrestrial systems (3–7) and is
increasingly being established for marine systems (8–11). Marine
phytoplankton generate roughly half of global primary pro-
duction (12–14) and play a critical role in oceanic ecosystem
structure and function. Within the phytoplankton, the diatoms
generate an estimated 40% of primary production (15). Thus,
diatoms alone exert a profound influence over marine primary
production and global carbon (C) cycling, particularly in coastal
margins and estuaries.
Phytoplankton are extremely diverse, with estimates of over

200,000 extant species (16, 17). This dramatic level of taxonomic
diversity in the plankton is difficult to resolve with the apparently
limited number of niches in the pelagic habitat because these
organisms compete for the same two basic resources: light and
nutrients. As was highlighted by Hutchinson (18), the phyto-
plankton violate Gause’s law of competitive exclusion, which
posits that two organisms competing for the same resources
cannot coexist. Much thought has gone toward identifying the
cause of the “paradox of the plankton,” including explanations
such as “contemporaneous disequilibrium” of patchy phyto-
plankton distributions (19), life history differences (20), species
oscillations (21), environmental fluctuation (22), intraspecific

variation (23), and differential niche partitioning (24). Of these
potential factors, one of the most difficult to observe directly in
the plankton is niche partitioning. Different species may have
unique strategies that allow them to specialize on certain re-
sources or nutrient forms, and species may have different re-
sponses to resource shifts that allow them to avoid competition.
Such specialization in ecoevolutionary strategy may underlie the
“winner-loser” dynamics observed in productive estuaries and
coastal systems, yet resolving patterns of species-specific re-
source metabolism in the field remains a central challenge.
It is accepted that the macronutrients nitrogen (N) and

phosphorus (P) are central to the structuring of phytoplankton
communities across large spatial and temporal scales (25–27),
and that phytoplankton compete for nutrients in the natural
environment (28, 29). Studies focused on nutrient geochemistry
and phytoplankton quotas or uptake have emphasized the im-
portance of nutrients to community dynamics, but these studies
do not generally examine resource partitioning between in-
dividual species (30, 31). Transcriptional studies provide species-
specific resolution, but few studies have examined the global
expression of nutrient metabolism pathways in the field (32) or in
organisms lacking a fully sequenced genome (33, 34), and as a
result, the mechanistic underpinnings of phytoplankton resource
metabolism in situ are not well understood. In situ global gene
expression analyses (metatranscriptome profiling) are a means
for elucidating a species’ metabolic capacity and examining
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patterns in resource utilization potential through time by tracking
the expression of species’ resource-responsive (RR) genes.
When simultaneously applied to multiple species in a sample,
this approach can resolve differences in the expressed gene
compliment and how it is modulated, which may reflect resource
partitioning of phytoplankton niche space (35). For example, this
approach has uncovered species-specific expression of genes for
the transport of organic compounds in the bacterioplankton (36–
38), highlighting potential differences in resource partitioning.
Although increasingly critical for identifying resource utilization
in the bacterioplankton, metatranscriptome profiling has only
recently been used to examine resource utilization in coastal
eukaryotic phytoplankton populations (39), largely due to chal-
lenges in quantifying a transcriptional response in a mixed pop-
ulation and, until recently, the lack of reference genomes and
transcriptomes for determining the origin of the transcriptional
response. Cooccurring phytoplankton may possess different met-
abolic capabilities and responses to resource availability, which
may then enable resource partitioning and the segregation of the
fundamental niche or the realized niche. Knowledge of if and how
these organisms modulate their niche space would allow predictive
models to better resolve species distribution and ecosystem
structure and function in the future ocean (26).
Herein, we examined pathways of resource metabolism be-

tween two cooccurring diatoms from the genera Thalassiosira
and Skeletonema, sampled from a time-series site in Narragansett
Bay. Narragansett Bay is a highly productive and dynamic estu-
arine environment on the east coast of the United States with an
estimated bay-wide average net production of 269 gC·m2·y−1 (40).
Quantitative metatranscriptomic techniques were developed and
used to (i) assign taxonomic designation, (ii) assess and track
changes in known metabolic capacity by means of the quantitative
molecular fingerprint (QMF), (iii) statistically identify the RR
gene set, and (iv) proportionalize the expression of RR genes to
track species-specific responses through time using standardized
transcriptional differentiation (STD) scores. This multifaceted
computational approach enabled the unprecedented resolution
of the unique strategies these two diatoms use for resource
acquisition.

Results and Discussion
Samples and Sequencing.Narragansett Bay has seasonal blooms of
diatoms that have been monitored through weekly cell counts
for over 50 y at a long-term time-series station (41, 42). Five
eukaryotic surface metatranscriptome samples were taken from
surface seawater collected during May and June of 2012 at the
time-series site, yielding over 358 million 100-bp, paired-end
cDNA reads from the field [sample 1 (S1)–S5] (SI Appendix,
Table 1). In conjunction with these field-based surveys, a nutri-
ent amendment incubation experiment was performed with
natural communities on May 30, 2012 (S3) to drive the com-
munity toward opposite extremes in the N/P ratio (Redfield ra-
tio) (SI Appendix, Table 2). Eukaryotic metatranscriptomes from
the five incubation treatments produced over 264 million 100-bp,
paired-end cDNA reads (SI Appendix, Table 1).
To assign taxonomic designation, sequences from the time

series were conservatively mapped (such that if a read mapped
to more than one gene, it was discarded) to a sequence library
containing all assembled sequences and annotations generated
through the Marine Microbial Eukaryotic Transcriptome Se-
quencing Project (MMETSP) (43), which were made public as of
March 17, 2014. The custom sequence library contained 401
transcriptomes across 209 species or cultured isolates. Between
62% and 71% of reads from the in situ samples mapped to the
MMETSP database with diatoms dominating the libraries, rep-
resenting 30–46% of the total mapped reads (Fig. 1). The peak
in diatom representation coincided with a bloom of Skeletonema
spp. detected in time-series cell counts (SI Appendix, Fig. 1) and

a period of historical overlap between the Skeletonema and
Thalassiosira genera. Skeletonema and Thalassiosira were well
represented during the time period studied in both mapped
RNA (Fig. 1) and cell counts (SI Appendix, Fig. 1). Thalassiosira
rotula was present, but at low abundance, during the time series,
whereas Skeletonema spp. was abundant, with sampling spanning
a bloom of Skeletonema (>10 million cells per liter) with peak
cell densities in S2 (May 21, 2012) (SI Appendix, Fig. 1). As such,
subsequent analyses were focused on these two groups by
remapping the data to representative transcriptomes: T. rotula
and Skeletonema costatum (SI Appendix, Table 1). S. costatum
was chosen because it was the transcriptome from the genus
Skeletonema that recruited the most hits in the MMETSP data-
base. Because Skeletonema is known to include morphologically
cryptic species that can only be identified by SEM (44–46), it is
referred to here as Skeletonema spp. for clarity. Up to 17.5% and
54.9% of reads from a single sample mapped to T. rotula and
S. costatum, respectively. As a point of comparison, reads were also
mapped to the genome of a second thalassiosirid, Thalassiosira
pseudonana, a diatom that is not known to be abundant in
Narragansett Bay (SI Appendix, Table 1). Although displaying
high identity with the 18S rDNA to T. rotula and S. costatum
(96% and 93% identity, respectively), less than 1% of the meta-
transcriptome reads mapped T. pseudonana (SI Appendix, Table 1),
highlighting the specificity of the approach.

Temporal Plasticity in Expressed Metabolic Capacity. Metatran-
scriptome short reads were mapped to transcriptomes that had
been annotated with Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) orthology (KO) (Dataset 1), allowing the ex-
pression of KO gene families within a KEGG module (higher
level groupings of KO gene families into pathway or functional
classifications) to be examined over time. Normalizing the ex-
pression of KEGG modules to the total KEGG annotated reads
for each organism across time yielded the QMF, which high-
lighted differences between the two species and differences
across time for each species (Fig. 2). A comparison of the total
number of annotated genes falling into each of the KEGG
modules revealed a close to one-to-one linear relationship (slope
of 1.0948, R2 = 0.9123) (SI Appendix, Fig. 2), indicating that the
observed differences are not an artifact of gene distribution be-
tween organisms. The QMFs of the two organisms were distinct,
and there were significant shifts in the QMF of each species over
time reflecting considerable plasticity in the expressed metabolic
capacity (SI Appendix, Fig. 3). Central carbohydrate metabolism,
C fixation, and other carbohydrate metabolism were some of the
most highly expressed KEGG modules in the field for both
Skeletonema spp. and T. rotula, although higher for Skeletonema
spp., where expression of these pathways peaked during S4,
representing over 84% of mapped KEGG reads (Fig. 2). The
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Fig. 1. Taxonomic classification of RNA-sequencing paired-end reads across
the five field samples. Classification was determined by mapping to a database
composed of all publicly available transcriptomes through the MMETSP as of
March 17, 2014.
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largest global shift in KEGG module expression was seen in
Skeletonema spp. on S2 (SI Appendix, Fig. 3), when its density
peaked at 11,520,000 cells per liter. The S2 time point for
Skeletonema spp. had increased QMF signals in ATP synthesis,
proteasome, and ubiquitin systems and decreased QMF signals
in photosynthesis and C metabolism relative to other time points.
For example, 0.03% of annotated transcripts mapped in the
photosynthesis KEGG module in S2, an order of magnitude
lower than the other samples which ranged between 0.3 to 2.2%
(Fig. 2). The temporal plasticity of transcript allocation to dif-
ferent aspects of metabolism for both species was striking and
likely reflects the dynamic environment that they inhabit: an es-
tuary where the geochemistry is highly variable (47).
Temporal plasticity in the KEGG module expression patterns,

including a shift away from the expression of C fixation and
photosynthesis, suggests that the elevated Skeletonema spp. cell
numbers observed in S2 may have occurred after this diatom
reached peak bloom biomass. A significant proportion of the
KEGG modules expressed were classified as ribosomes (5–45%
for Skeletonema spp. and 5–9% for T. rotula). Gifford et al. (35)
suggested that ribosomal protein expression correlates with
growth rate, and applying this principle to these eukaryotic data
suggests growth rates for both Skeletonema spp. and T. rotula
fluctuated, with peaks in growth rate occurring during S1 and S3
for Skeletonema spp. This pattern for Skeletonema spp. did not

track with the relative abundance of the organism, which peaked
in the S2 sample, again suggesting that this sample was taken
during the bloom decline. These growth dynamics cannot be fully
resolved without a more detailed sample set.
Skeletonema spp., the dominant diatom during the study pe-

riod (Fig. 1), had a higher proportion of transcripts related to
growth relative to T. rotula, such as those transcripts encoding
aspects of C metabolism, N metabolism, sulfur metabolism, and
lipid metabolism (Fig. 2). Conversely, several KEGG modules
were more highly expressed in T. rotula compared with Skel-
etonema spp., particularly those KEGG modules for glycan me-
tabolism, phosphate, and amino acid transport systems, as well as
repair system modules (Fig. 2). The majority of highly expressed
KO modules (e.g., N metabolism) were based on moderate to
high expression across several KO gene families, but the differ-
ences in expression at the module level were due to differences
in the expression of a single KO gene family within the KEGG
module in some cases. For example, the driver of the difference
in the expression of glycan metabolism, which represented up-
ward of 41% of all KEGG annotated reads for T. rotula com-
pared with less than 0.6% for Skeletonema spp., was primarily
associated with the high expression of a putative UDP–N-acetyl-
glucosamine–dolichyl-phosphate N-acetylglucosaminephosphotrans-
ferase (K01001). This gene was identified as a silaffin-like response
gene associated with silica polymerization (48). Differences in silica
metabolism may partially drive how the fundamental niche is seg-
regated between these two diatoms. Taken together, the contrast in
QMF between the two diatoms underscores the fundamental dif-
ferences in expressed metabolic capacity that are present in these
two cooccurring diatoms and highlights traits of a successful com-
petitor (e.g., high expression of C metabolism).

Species-Specific Resource Utilization Underpins Physiological Ecology.
KO gene families related to N and P metabolism were examined
in the field samples to identify species-specific patterns in re-
source utilization. Skeletonema spp. and T. rotula both possess
and express core pathways of N and P metabolism (e.g., the
ornithine-urea cycle) (Fig. 3). Expression of these individual KO
gene families was temporally variable, as was observed with the
expression of KEGG modules, but related enzymes in a pathway
exhibited a coordinated response (Fig. 3). For example, the
nitrate transporter (K02575), nitrate reductase (K10534), and
nitrite reductase (K00366) in Skeletonema spp. all had peak
expression in S2 (Fig. 3). Skeletonema spp. and T. rotula share
pathway homologs, including the same suite of N transporters
(ammonium, nitrate, and amino acid), but these genes often had
disparate patterns of expression between the two species (Fig. 3).
Skeletonema spp., the more abundant diatom, had high expres-
sion of KO gene families associated with the acquisition of ni-
trate and ammonia that were particularly amplified during the S2
bloom event. T. rotula had low expression of both of those
transporters but high expression of a general amino acid trans-
porter (Fig. 3). Amino acid transport (49) and nitrate transport
(50) have previously been found to correlate inversely with in-
tracellular nitrate concentration in the cell or in the presence of
ammonia in the media. However, here, two closely related di-
atoms existing in the same parcel of water and the same nutrient
environment are expressing genes to access different pools of
dissolved N. Similar to nitrate transport, there was high expres-
sion of nitrate/nitrite reductase KO gene families in Skeletonema
spp., whereas T. rotula appears to possess a different N reduction
metabolism. This difference is observed in a KO gene family that
is absent from the reference transcriptome of Skeletonema spp.:
hydroxylamine reductase (Fig. 3). This gene has been found in
the genomes of both T. pseudonana and Phaeodactylum tri-
cornutum, and it is thought to have been acquired via lateral
transfer from bacteria (51). The enzyme may potentially aid re-
dox balancing and electron cycling from nitrate reduction (52).
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Although the absence of this gene in Skeletonema spp. has not
been definitively shown, the marked high expression of this gene
in T. rotula suggests that this gene product represents a po-

tential point of segregation in the metabolic capacity of these
two species. Together, these data suggest that these species
have disparate strategies for acquiring N and these differences

Citruline

L-Argino 
succinate

UREA CYCLE

NO3

NO2

NO3

Hydroxylamine Nitroalkane Cyanate

Carbamoyl-P Ornithine
Arg Fumarate

Urea

Amino 
Acids

NH4

PO4

PO4 PO4

AsO3

AsO3

Nucleotides

Glycero-
phospho-

diester

NTD

GDP

L-Gln L-GluNH4

Percent of K
EG

G
 A

nnotated R
eads

S1 S2 S3 S4 S5

KO

T. rotula

Skeletonema spp. 

KO Not in 
reference

Not 
expressed

AMT Ammonium transporter (K03320)
AAPJ General L-amino acid transport system (K09969) 

ARSA Arsenite-transporting ATPase (K01551)

ASSY Argininosuccinate synthase (K01940)
ASL Argininosuccinate lysase (K01755)

ARG Arginase (K01476)

CPS1 Carbamoyl-phosphate synthase (K01948)
CYNS Cyanate lyase (K01725)
GDH2 Glutamate dehydrogenase (K15371)
GDHA Glutamate dehydrogenase (NADP+) (K00262) 

GLT1 Glutamate synthase (NADP/NADH) (K00264)

GLTD Glutamate synthase; small chain (K00266)
GLT2 Glutamate synthase (ferredoxin) (K00284)

GLNA Glutamine synthetase (K01915)

HCP Hydroxylamine reductase (K05601)

GDP Glycerophosphoryl diester phosphodiesterase (K01126)

NRT Nitrate transporter (K02575)
NR Nitrate reductase (NADP/NADPH) (K10534)

NIRA Nitrite reductase (ferredoxin) (K00366)
NPD Nitronate monooxygenase (K00459)
NPT Sodium-phosphate cotransporter (K14683)

NTD 5’-bisphosphate nucleotidase (K01082)
OTC Ornithine carbamoyltranferase (K00611)
PTA Putative phosphate transporter (K02036)
URE Urease (K01427)

NR

ASLOTC

NRT

NIRA

HCP

GLTD

GLT2GLT1

GLNA

CYNS

CPS1

ASSY

ARSA

ARG

AAPJ

URE

AMT

GDH2GDHA

NPD

NPTPTA

10-2

10-4

10-6

Fig. 3. Schematic cell model depicting the relative expression of KO gene families associated with N and P metabolic pathways for Skeletonema spp. and
T. rotula in Narragansett Bay across the five sampling time points (S1–S5). Color indicates the proportion of total reads mapping to each KEGGmodule relative
to all KEGG annotated reads.

Alexander et al. PNAS | Published online April 13, 2015 | E2185

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S
PN

A
S
PL

U
S



may partially drive the relative success of Skeletonema spp.
over the sample period.
Although N has been observed to be a primary nutritional

driver in Narragansett Bay (47, 53, 54), P may also drive the
dynamics of these two diatoms. Skeletonema spp. shows elevated
expression of a sodium phosphate cotransporter (NPT), again
with peak expression during S2 (bloom). T. rotula does not ex-
press the NPT as highly but, by comparison, has a much higher
transcript count for a putative P transporter that is not detected
in Skeletonema spp. (Fig. 3). These transporters may have dif-
ferent kinetic properties that allow the two species to diverge in
their PO4 uptake strategies. Genes associated with the scaveng-
ing of P from organic molecules, such as glycerophosphoryl di-
ester phosphodiesterase (GDP), also suggest differences in
expressed metabolic capacity between the two species. GDP may
be associated with exogenous metabolism of dissolved organic P
(DOP) or internally in the cleaving of P from lipids (55, 56). The
expression of GDP by Skeletonema spp., with a peak around S2,
and the apparent absence of this transcript in T. rotula suggest
Skeletonema spp. may be accessing a pool of DOP that is not
being used by T. rotula. In T. pseudonana, related transcripts are
tightly linked to concomitant changes in the proteome and bio-
chemical activities (56). If these transcriptional patterns are
linked to similar changes in activities, then these insights suggest
that there is a fundamental difference in the metabolic capacity
being expressed in the same environment by the two diatoms.
Skeletonema spp. is both actively taking up PO4 and hydrolyzing
organic sources, whereas T. rotula is not hydrolyzing DOP and is
taking up inorganic PO4 by a different mechanism. In summary,
these data suggest that these two diatoms have a unique meta-
bolic capacity for the utilization of specific forms of N and P.
Such disparate resource utilization potential could be a niche-
defining feature that underpins diatom diversity as well as the
“winner-loser” dynamic observed here with the differences in cell
abundance between the species.

Identification and Modulation of RR Genes in Situ Highlight Species-
Specific Differences. To identify and quantitatively track RR genes
in situ, incubation experiments were used to examine species-
specific transcriptional responses to shifts in N/P ratios. Com-
paring the expression patterns between like nutrient treatments
(+N vs. −N and +P vs. −P) for each of the organisms enabled the
statistical identification of a suite of RR genes (57) and stable
reference genes (58). RR gene counts were normalized to the
stable reference genes (SI Appendix, Fig. 4), resulting in stable
gene normalized counts (SGNCs). Calculation of an SGNC is
similar in concept to the reference gene normalization done in
quantitative RT-PCR (qRT-PCR) (59) or metatranscriptome
studies of prokaryotes (60), with the added value of not having to
rely on reference genes from model diatoms.
Of the transcripts expressed at greater than two tags per mil-

lion (TPM) for at least one treatment, 24.5% and 17.9% were
identified as RR by being significantly up- or down-regulated in
the N or P treatments for Skeletonema spp. and T. rotula, re-
spectively (SI Appendix, Table 3 and Dataset 2). As is common
with phytoplankton studies (32), the majority of the RR genes
do not have a KEGG annotation (Fig. 4A and Dataset 2). The
portion of the RR gene set annotated with KEGG ontology
for Skeletonema spp. and T. rotula revealed that, relative to the
full KEGG profile, genes comprising genetic information pro-
cessing associated with replication (encompassing ribosomes,
nucleotide replication, and processing) were underrepresented
for both organisms in the RR set (SI Appendix, Fig. 5). By
contrast, the RR sets were enriched for energy metabolism,
carbohydrate metabolism, and lipid metabolism, which encom-
pass pathways known to be associated with the metabolism of N
and P (Fig. 4A and SI Appendix, Fig. 5). Specific genes in this set
included, but were not limited to, those genes associated with N

assimilation (e.g., glutamate dehydrogenase, glutamine synthase,
nitrate reductase), dissolved organic N utilization (e.g., urease,
aminopeptidase, amino acid transport system), P scavenging (e.g.,
phosphate transporter, NPT), and DOP utilization (e.g., phos-
phatases) (Dataset 2). A number of these genes have been shown
to be N- or P-responsive in transcriptional studies with cultures of
the diatom T. pseudonana (56, 61), and transporters and enzymes
for the processing of organic N or P, as observed here, are well
known to be RR in many phytoplankton (56, 62–64). Overall, these
genes demonstrated patterns of regulation in situ (Fig. 4B and SI
Appendix, Fig. 6) similar to what has been observed in culture (56,
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Fig. 4. Functional composition of the RR gene sets for T. rotula and Skel-
etonema spp. (A), relative expression in the incubation samples (B), and STD
scores (C) for a known P-responsive gene, sodium-phosphate cotransporter,
and two RR gene families. (A) RR gene sets were identified through cross-
comparison of like-nutrient incubations (i.e., +N vs. −N and +P vs. −P), using
ASC (fold change = 2, post-p > 0.95) (57). The relative functional categori-
zation of the RR gene set for T. rotula and Skeletonema spp., based on KEGG
ontology as assigned by the KEGG Automatic Annotation Server, is depicted
at the module level relative to the portion unannotated with the KEGG.
(B) Expression pattern in SGNCs of the genes from the associated gene cluster
from T. rotula (T) and Skeletonema spp. (S) plotted in related incubations
(i.e., RR1 shows expression from +P and −P incubations). The asterisk indicates
significance between pair-wise comparisons (fold change = 2, post-p > 0.95)
(57). (C) STD scores plotted across the five sample points showing STDP for
the P-significant genes and STDN for the N-significant genes. Dashed hori-
zontal lines at 0 and 1 indicate the +P or +N and −P or −N for corresponding
significant genes.
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61). In the incubations, the NPT was significantly up-regulated in
the −P treatment for both species (Fig. 4B), which is consistent with
P regulation of a T. pseudonana NPT homolog (Thaps_24435)
observed in culture experiments (56). Nitrate reductase, which has
been shown to be regulated by N in T. pseudonana (Thaps_25299)
(61), was up-regulated in −N for T. rotula, but not for Skeletonema
spp. (SI Appendix, Fig. 6). In fact, members of this large gene family
(SI Appendix, Fig. 7) showed disparate regulation in both species (SI
Appendix, Fig. 6). These data demonstrate that the use of nutrient
amendments is robust for normalizing and identifying N- and P-
responsive genes in the field that are consistent with known
signals, but they also point to the value of in situ analyses,
because application of a priori knowledge about regulation
from model diatoms could lead to misinterpretations.
Of the RR gene sets for Skeletonema spp. and T. rotula, only

17.7% and 12.7% of the genes, respectively, could be annotated
with KEGG ontology (Fig. 4A). Identifying differentially regu-
lated genes in situ through experimental manipulations allowed
the expression patterns of genes to be tracked even when their
function was unknown. As an example, two RR gene families
were identified with homologs in Skeletonema spp. and T. rotula
(Fig. 4B and SI Appendix, Fig. 7). RR gene family 1 (RR1) was
up-regulated in −P compared with +P for both species (Fig. 4B).
Homologs from RR1 were also identified in other diatom genomes
(Fracy_268075, Phatr_19661, Psemu_246578, Psemu_319824, and
Thaps_32459) (SI Appendix, Fig. 7). Annotations for these genes
were limited, although Fracy_268075 was identified as possibly in-
volved in intracellular trafficking, secretion, or vesicular transport,
suggesting these proteins may be involved in poly-P metabolism
(65). RR2 demonstrated significantly different patterns of regula-
tion in the two species: up-regulated in −N compared with +N for
T. rotula but down-regulated in −N compared with +N for Skel-
etonema spp. (Fig. 4B). A homolog from RR2 was identified in
T. pseudonana (Thaps_22648) (SI Appendix, Fig. 7) and was poorly
characterized, with the best BLAST hit to a human dentin sialo-
phosphoprotein. This finding suggests RR2 could be associ-
ated with biomineralization.
To enable cross-comparison of the RR genes between species,

their expression was put into a greater metabolic context by
proportionalizing the expression in the field to the transcrip-
tional range observed in the incubations with extremes in the N/P
ratio. This technique is similar in concept to targeted assays using
qRT-PCR to compare expression patterns between species in
culture (66). Briefly, the SGNC of a gene in the field was
bounded by the SGNC from each of the nutrient treatments to
yield the STD score for both N (STDN) and P (STDP) (Fig. 4C).
The STD score was used to compare expression directly relative
to its maximum and minimum capacity, where values of STD ≥ 1
indicate signals were similar to the deplete condition and values
of STD ≤ 0 indicate similarity to the replete condition. The
STDN and STDP were plotted for genes from the NPT and the
two highlighted RR gene families over the time series (Fig. 4C).
The NPT for both Skeletonema spp. and T. rotula showed ele-
vated expression during S2. RR1, which was also identified as
significantly expressed in −P compared with +P, also showed
elevation during S2 (the bloom). The expression of RR1, how-
ever, was also elevated on S4 for both diatoms, which was not
seen for the NPT. However, the STDP was >1 for Skeletonema
spp., indicating a far more P-deficient response in Skeletonema
spp. compared with T. rotula, which never demonstrated
P-sensitive expression in the field comparable to the P-sensitive ex-
pression observed in the −P incubations (Fig. 4C). RR2 showed
different patterns of expression across time for both species.
Most interesting perhaps was the low STDN score for Skel-
etonema spp. during S2 (the bloom), indicating that RR2 ex-
pression was more similar to the +N treatment, whereas the
STDN for T. rotula was greater than 1, suggesting that RR2 ex-
pression was more similar to the −N treatment (Fig. 4C). These

three targeted examples suggest that during the large bloom of
Skeletonema spp., Skeletonema spp. was expressing genes in a
pattern more similar to the −P and +N treatments, whereas T.
rotula was expressing genes similar only to the −N treatment.
Notably, these orthogonal patterns were associated with the same
environment.
The STDN and STDP for all of the RR genes were calculated

(Dataset 2) to expand upon the single-gene analyses above. The
RR genes were plotted based on the STDN/STDP ratio (SI Ap-
pendix, Fig. 8) to examine how similar the pattern was to the
incubation N/P ratio (Fig. 5A and SI Appendix, Fig. 9). Redfield
regimes have historically been used to characterize different
aquatic environments based on the ratio of nutrient resources
required for growth. For example, a Redfield ratio of N/P = 16,
here called “Redfield,” would predict neither P nor N limitation.
As expected, RR genes identified as N-regulated genes fall pri-
marily into the N/P < Redfield quadrant and P-regulated genes
fall primarily into the N/P > Redfield quadrant for both Skel-
etonema spp. and T. rotula (Fig. 5A). Observing patterns in the
distribution of these genes across time, S2 stands out among the
time points, where a significant (88%) proportion of the P-regulated
genes from Skeletonema spp. move far into the N/P > Redfield
quadrant (Fig. 5A). This N/P > Redfield physiology is consistent
with the single-gene analyses (Fig. 4C) and suggests P availability
may have constrained Skeletonema spp. populations during the
bloom sample (S2). Conversely, a large proportion (59%) of the
N-regulated genes in T. rotula move into the N/P < Redfield
quadrant (Fig. 5A) consistent with the divergent responsiveness
of RR2 observed for T. rotula compared with Skeletonema spp.
(Fig. 4C). In fact, with the exception of S4 and S5, where T. rotula
had even distribution between the N/P > Redfield and N/P <
Redfield quadrants, the two species always showed statistically sig-
nificant [Tukey’s honest significant difference analysis (p < 0.05)]
orthogonal responses in the distribution of the RR gene set across
the two quadrants (Fig. 5B and SI Appendix, Fig. 10). These pat-
terns, combined with the temporal variability in gene expression
patterns, indicate a finely tuned response to the environment, which
is distinctive for each diatom species. Although there are many
potential controls on diatom dynamics in Narragansett Bay, in-
cluding top-down processes like predation (67, 68), these patterns of
RR gene expression suggest the presence of bottom-up nutrient
control on diatom population dynamics in Narragansett Bay.
This work addresses fundamental knowledge gaps in how

phytoplankton species are able to cooccur while they compete
for the same basic resources. Cooccurring diatoms appear to
have different functional capabilities in N and P metabolism, and
this metabolic potential is modulated in field populations in a
distinctive way for each diatom. These findings suggest that
differential resource partitioning is occurring between these two
diatoms in situ. Such resource partitioning could facilitate the
vast diversity of the phytoplankton and the structure, function,
and productivity of aquatic ecosystems. In culture studies,
resource-related transcriptional changes have been shown to be
tightly choreographed with changes in proteins, activities, and
biochemical pools (56, 62, 69). If further work is similarly able to
link the transcriptional patterns observed here with changes in
enzymatic activities or uptake rates, then shifts in the RR gene
sets might reflect aspects of the realized niche and how it differs
between these two species. These detailed in situ transcrip-
tional comparisons would not have been possible without pro-
portionalization to metabolic capacity (STD), which provides
a quantitative means to compare transcriptional patterns di-
rectly between species. This approach could be applied to other
systems, organisms, or environmental parameters to identify re-
sponsive genes and proportionalize their expression, with the aim
of answering similar questions about how cooccurring species
adjust their cellular physiology to partition their niche space.
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Materials and Methods
Experimental Setup and Sample Collection. Surface seawater was collected
and sampled for total community RNA at the long-term sampling site in
Narragansett Bay (41°34′12′′ N, 71°23′24′′ W) during 2012 (May 16, May 21,
May 30, June 4, and June 8, here called S1 through S5) in conjunction with
the weekly time-series sampling effort. To diminish the influence of diel
signals, samples were collected and processed between 0830 and 0900 local
time. Near-surface water was collected in an acid-washed carboy and then
filtered onto polycarbonate filters (5.0-μm pore size, 47 mm) using a peri-
staltic pump. Filters were then placed in cryovials and stored in liquid N until
RNA extraction. In this manner, all samples were preserved within 15 min of
collection. In addition to sampling for total community RNA, phytoplankton
abundance was measured as part of the long-term weekly survey (70, 71).

A nutrient amendment incubation experiment was performed on May 30,
2012, with S3 representing the t = 0 of the experiment. Water collected in
conjunction with S3 was prefiltered through 200-μm mesh to remove large
zooplankton grazers and placed into acid-washed 2.5-L bottles. Triplicate
bottles were then amended with nutrients to create five treatments: +N, +P,
−N, −P, and ambient control. The +N and +P treatments were designed to
eliminate the N and P stress signals, respectively, whereas the −N and −P
treatments were supplemented with everything except the nutrient in ques-
tion (e.g., the −N treatment was amended with P, Si, Fe, and vitamins) to force
the drawdown of N and P, respectively (SI Appendix, Table 2). N and P
amendment concentrations were selected to be ∼10-fold the seasonal average
ambient N and P concentrations in the surface waters of Narragansett Bay
measured at station II. The Si, Fe, and f/5 vitamin amendments were made in
proportion to the f/5 media ratios (72). Bottles were placed in a flow-through
incubator at ambient temperatures and photosynthetically active radiation
(PAR) to mimic the collection depth. The incubation was run for 48 h, at which
point all treatments were sampled for total community RNA as described
above by filtering and snap-freezing 2 L of biomass from each replicate bottle.

RNA Extraction and Sequencing. Filters from triplicate bottles, representing
∼6 L of water, were pooled by treatment and extracted for each of the in situ
and incubation experiment samples. RNA was extracted from individual
filters with the RNeasy Mini Kit (Qiagen), following a modified version of the
yeast protocol. Briefly, lysis buffer and RNA-clean zircon beads were added
to the filter, and samples were vortexed for 1 min, placed on ice for 30 s, and

then vortexed again for 1 min. Samples were processed following the yeast
protocol. The resulting RNA was eluted in water and then treated for pos-
sible DNA contamination using a TURBO DNA-free Kit (Ambion) following
the Rigorous Dnase protocol. RNA from each triplicate was then pooled by
sample or treatment, using the RNA Cleanup Protocol from the RNeasy Mini
Kit. The total RNA (>1,000 ng for each sample) was then enriched for
eukaryotic mRNA through a poly-A pull-down onto oligo-dT beads. The
resulting enriched RNA sample then went through library preparation with
a TruSeq RNA Prep Kit (Illumina). Libraries were sequenced at the Columbia
University Genome Center with an Illumina HiSeq2000. Each sample was
sequenced to produce ∼60 million, 100-bp, paired-end reads (SI Appendix,
Table 1). Raw sequence data quality was visualized using FastQC (73) and
then cleaned and trimmed using Trimmomatic version 0.27 (paired-end mode;
6-bp-wide sliding window for quality below 20; minimum length of 25 bp) (74).
All project sequence reads are available at the National Center for Biotechnology
Information (NCBI) under accession number SRP055134.

Transcriptome and Genome Mapping. To assign a taxonomic identification
to the reads, a database was created from transcriptomes made publicly
available through the MMETSP as of March 17, 2014. In total, 401 tran-
scriptomes from 209 species or cultured isolates were collected. Like-species
transcriptomes were combined (regardless of strain or condition) using CD-HIT-
EST (98% identity, word size of 9). The resulting clustered set of transcripts was
considered to be the representative transcriptome for the species or cultured
isolate. The 209 transcriptomes created in this manner were concatenated to
form a comprehensive species-level transcriptome database from the MMETSP
library. Due to the large size of the resultingMMETSP database, trimmed reads
were mapped to the MMETSP using the Burrows–Wheeler aligner (75) and
then counted using the HTSeq. 0.6.1 package (76).

Transcriptomes from two ecologically relevant diatom species in Narra-
gansett Bay were selected: S. costatum RCC1716 (MMETSP0013, accessed
from the publicly available transcriptome databases of the Moore Founda-
tion Marine Microbiology Initiative-supported MMETSP, National Center for
Genome Resources) and T. rotula CCMP3096 (a custom assembly available at
NCBI under BioSample SAMN03349676). These transcriptomes were in-
dividually clustered using CD-HIT-EST (parameters: −c 0.98, −n 9) (77). The
resulting clustered set of transcripts was then concatenated to form a
reference transcriptome database. Trimmed reads from the field and
incubation samples were mapped to this transcriptome database using

Fig. 5. Evolution of RR gene partitioning over time in Narragansett Bay for T. rotula and Skeletonema spp. (A) Stable gene normalized field signals for each
gene identified as significantly (twofold change, post-p > 0.95) up-regulated in −P vs. +P for Skeletonema spp. (yellow) and T. rotula (orange) and in −N vs. +N
for Skeletonema spp. (cyan) and T. rotula (dark blue) were proportionalized relative to the expression of those genes in nutrient incubations, yielding the
STDN and STDP for each gene. These data are plotted for S1–S5. (B) Proportion of identified RR genes falling into the N/P > Redfield and N/P < Redfield
quadrants for T. rotula (T) and Skeletonema spp. (S). FC, fold change.

E2188 | www.pnas.org/cgi/doi/10.1073/pnas.1421993112 Alexander et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421993112/-/DCSupplemental/pnas.1421993112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421993112/-/DCSupplemental/pnas.1421993112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421993112/-/DCSupplemental/pnas.1421993112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1421993112


Bowtie2 version 2.2.1 (parameters: −a, −sensitive) (78). As a point of
comparison, reads were also mapped using Bowtie2 version 2.2.1 under the
same parameters to the genome of the model centric diatom species,
T. pseudonana CCMP1335 (version 3.0), an organism not known to be abundant
in Narragansett Bay. Mapped reads were then counted by transcript using the
HTSeq. 0.6.1 python package (parameters: −m union, −s no) (76). Reads aligning
to more than one full transcript were not counted. KEGG pathways were
assigned to the assembled sequences with the online KEGG Automatic Anno-
tation Server, using the bidirectional best-hit method to obtain KO annotations.
In this study, only genes with a normalized count (NC) (raw count/total number
of genes mapped to an organism) of at least two TPM in at least one of the field
or incubation samples were included, thus limiting the sample set to 4,318 genes
for T. rotula (19.3% of the transcriptome) and 20,921 genes for Skeletonema
spp. (75.6% of the transcriptome). This difference in coverage is directly
related to their relative abundance in the population.

Transcriptome Clustering. To assess relatedness of genes within Skeletonema
spp. and T. rotula, the transcriptomes were translated using ORF predic-
tor (proteomics.ysu.edu/tools/OrfPredictor.html) using a reference BLASTx
alignment against the NCBI database with an 1e-5 cutoff (79). These trans-
lated peptide sequences were then combined with the translated proteins
from the diatom genomes Fragilariopsis cylindrus CCMP1102 version 1.0,
P. tricornutum CCMP632 version 2.0, Pseudonitzschia multiseries CLN-47
version 1.0, and T. pseudonana CCMP1335 version 3.0, which were collected
from the Joint Genome Institute database (genome.jgi-psf.org/). A protein
similarity network was then created using EGN, a software program that
automates the reconstruction of gene networks from protein sequences
through reciprocal BLASTp analysis (e-value <1e-5, 20% hit identity thresh-
old, 5% best reciprocal threshold of best e-value, 90% minimal match cov-
erage threshold) (80, 81). Networks were then visualized and manipulated
using Cytoscape 3.0, where the layout of the network was produced using
an edge-weighted, spring-embedded model based on e-value, meaning that
genes that are closer together are more similar (82, 83). Known RR genes
from previous transcriptome studies of the diatom species T. pseudonana
were selected for analysis: (i) the P-responsive gene, Thaps_24435, which is
an NPT (56) and (ii) the N-responsive gene, Thaps_25299, which is an as-
similatory nitrate reductase (61).

Identification of Stable and Nutrient-Responsive Genes. Intercomparison of
nutrient-incubation experiments enabled the identification of both nutrient-
responsive genes and stably expressed reference genes for T. rotula and
Skeletonema spp. For each organism, RR genes were identified by compar-
ing the counts for that organism in +N to the −N incubation and the +P to
the −P incubation, respectively, using analysis of sequence counts (ASC), an
empirical Bayes method, which estimates the prior distribution from the
data itself (57). ASC analyses were run using raw count data from each species
separately. Genes were considered to be differentially regulated between
treatments if for a fold change of 2.0, the posterior probability (post-p) was
greater than 0.95 (56). After surveying the output of several different post-p
cutoffs (SI Appendix, Fig. 11), stable genes were identified using ASC, as de-
scribed by Alexander et al. (58), through pairwise comparisons of each of the
incubation treatments (fold change of 1.25, post-p < 0.1).

Normalization of Metatranscriptome Data. Counts from the field were first
normalized to the sequences belonging to the species in the library (Eq. 1).
For a particular species, c, the number of reads mapping to a gene g, ci,g, was
normalized to the sum of all of the counts across all genes for that organism,
yielding the NC, similar to normalization techniques used for metatran-
scriptome data (32, 84):

NC (Eq. 1):

NCi,g =
ci,gP

g∈G
ci,g

. [1]

Henceforth, only genes for which NC > 2 TPM in at least one sample (in-
cubation or field) were considered. To facilitate interspecies comparisons,
the NC was normalized to the geometric mean of the set of stable reference
genes, R, yielding an SGNC. The calculation of an SGNC (Eq. 2) for meta-
transcriptome data was designed to emulate the normalization used in qRT-
PCR studies (85).

SGNC (Eq. 2):

SGNCi,g =
NCi,g�

∏
R
NCi,g

�1=R
. [2]

The nutrient-responsive genes identified as differentially expressed in the
nutrient incubations (SI Appendix, Table 2) were then selected for investi-
gation in the field metatranscriptomes (S1–S5). The SGNCs from the field
(SGNCfield) for these nutrient-related genes were bounded by the SGNCs from
like nutrient incubations to calculate the STDN and STDP (Eqs. 3 and 4).

STDN (Eq. 3):

STDN =
SGNCfield − SGNC+N

SGNC−N − SGNC+N
. [3]

STDP (Eq. 4):

STDP =
SGNCfield − SGNC+P

SGNC−P − SGNC+P
. [4]

For example, in calculating STDN, the SGNCfield is put in the range of the
SGNC+N and SGNC−N. In consequence, if the STDN for a gene in the field
equals 0, it is more similar in expression to the +N treatment, and if it equals
1, it is more similar in expression to the −N treatment. As such, a plot of STDN

against STDP can divide the space into two main theoretical quadrants N/P >
Redfield (STDP > 1 and STDN < 0) and N/P < Redfield (STDN > 1 and STDP < 0)
(SI Appendix, Fig. 8). The total number of genes falling into each of the
quadrants was counted by varying the bounds considered: the N/P > Redfield
ratio quadrant (STDP > C; STDN < C for 0.25 < C < 0.75) and the N/P < Redfield
ratio quadrant (STDP < C; STDN > C for 0.25 < C < 0.75). To approximate vari-
ation conservatively, the value of C was varied over 10 different values, and
the average and SD for the percentages of genes falling into each of the
quadrants were quantified. Similarity of data between species by quadrant was
assessed using an ANOVA with a generalized linear model. The results from a
post hoc Tukey test show the divergence of species across time (P < 0.05).
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