13 research outputs found

    The oral microbiome – an update for oral healthcare professionals

    Get PDF
    For millions of years, our resident microbes have coevolved and coexisted with us in a mostly harmonious symbiotic relationship. We are not distinct entities from our microbiome, but together we form a 'superorganism' or holobiont, with the microbiome playing a significant role in our physiology and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral microbiome and gained new insights into its role during both health and disease. Perturbations of the oral microbiome through modern-day lifestyles can have detrimental consequences for our general and oral health. In dysbiosis, the finely-tuned equilibrium of the oral ecosystem is disrupted, allowing disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current knowledge of the oral microbiome in health and disease and to discuss implications for modern-day oral healthcare

    Porphyromonas gingivalis–dendritic cell interactions: consequences for coronary artery disease

    Get PDF
    An estimated 80 million US adults have one or more types of cardiovascular diseases. Atherosclerosis is the single most important contributor to cardiovascular diseases; however, only 50% of atherosclerosis patients have currently identified risk factors. Chronic periodontitis, a common inflammatory disease, is linked to an increased cardiovascular risk. Dendritic cells (DCs) are potent antigen presenting cells that infiltrate arterial walls and may destabilize atherosclerotic plaques in cardiovascular disease. While the source of these DCs in atherosclerotic plaques is presently unclear, we propose that dermal DCs from peripheral inflamed sites such as CP tissues are a potential source. This review will examine the role of the opportunistic oral pathogen Porphyromonas gingivalis in invading DCs and stimulating their mobilization and misdirection through the bloodstream. Based on our published observations, combined with some new data, as well as a focused review of the literature we will propose a model for how P. gingivalis may exploit DCs to gain access to systemic circulation and contribute to coronary artery disease. Our published evidence supports a significant role for P. gingivalis in subverting normal DC function, promoting a semimature, highly migratory, and immunosuppressive DC phenotype that contributes to the inflammatory development of atherosclerosis and, eventually, plaque rupture

    Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis

    No full text
    A bacterial etiology of rheumatoid arthritis (RA) has been suspected since the beginnings of modern germ theory. Recent studies implicate mucosal surfaces as sites of disease initiation. The common occurrence of periodontal dysbiosis in RA suggests that oral pathogens may trigger the production of disease-specific autoantibodies and arthritis in susceptible individuals. We used mass spectrometry to define the microbial composition and antigenic repertoire of gingival crevicular fluid in patients with periodontal disease and healthy controls. Periodontitis was characterized by the presence of citrullinated autoantigens that are primary immune targets in RA. The citrullinome in periodontitis mirrored patterns of hypercitrullination observed in the rheumatoid joint, implicating this mucosal site in RA pathogenesis. Proteomic signatures of several microbial species were detected in hypercitrullinated periodontitis samples. Among these, Aggregatibacter actinomycetemcomitans (Aa), but not other candidate pathogens, induced hypercitrullination in host neutrophils. We identified the pore-forming toxin leukotoxin-A (LtxA) as the molecular mechanism by which Aa triggers dysregulated activation of citrullinating enzymes in neutrophils, mimicking membranolytic pathways that sustain autoantigen citrullination in the RA joint. Moreover, LtxA induced changes in neutrophil morphology mimicking extracellular trap formation, thereby releasing the hypercitrullinated cargo. Exposure to leukotoxic Aa strains was confirmed in patients with RA and was associated with both anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF). The effect of HLA-DRB1 shared epitope alleles on autoantibody positivity was limited to RA patients that were exposed to Aa. These studies identify the periodontal pathogen Aa as a candidate bacterial trigger of autoimmunity in RA

    Genomic stability of aggregatibacter actinomycetemcomitans during persistent oral infection in human

    Get PDF
    The genome of periodontal pathogen Aggregatibacter actinomycetemcomitans exhibits substantial variations in gene content among unrelated strains primarily due to the presence or absence of genomic islands. This study examined the genomic stability of A. actinomycetemcomitans during its persistent infection in the same host. Four pairs of A. actinomycetemcomitans strains, each pair isolated from an individual over time (0-10 years), were examined for their gains/losses of genes by whole genome sequencing, comparative genomic hybridization by microarray and PCR analysis. Possible effects due to genomic changes were further assessed by comparative transcriptome analysis using microarrays. The results showed that each pair of strains was clonally identical based on phylogenetic analysis of 150 core genes. A novel 24.1-Kb plasmid found in strain S23A was apparently lost in the sibling strain I23C. A 353-bp inversion affecting two essential genes of the serotype-specific gene cluster was found in the serotype antigen-nonexpressing strain I23C, while the same gene cluster was intact in the serotype-expressing sibling strain S23A. A 2,293-bp deletion affecting a gene encoding oxaloacetate decarboxylase and its neighbor region was found in strain SCC2302 but not in the sibling strain AAS4a. However, no evidence of gains or losses of genomic islands was found in the paired strains. Transcriptome profiles showed little or no difference in the paired strains. In conclusion, the genome of A. actinomycetemcomitans appears to be relatively stable during short-term infection. Several types of genomic changes were observed in the paired strains of A. actinomycetemcomitans recovered from the same subjects, including a mutation in serotype-specific gene cluster that may allow the bacteria to evade host immune response
    corecore