57 research outputs found

    Systematic study of Coulomb distortion effects in exclusive (e,e'p) reactions

    Get PDF
    A technique to deal with Coulomb electron distortions in the analysis of (e,e'p) reactions is presented. Thereby, no approximations are made. The suggested technique relies on a partial-wave expansion of the electron wave functions and a multipole decomposition of the electron and nuclear current in momentum space. In that way, we succeed in keeping the computational times within reasonable limits. This theoretical framework is used to calculate the quasielastic (e,e'p) reduced cross sections for proton knockout from the valence shells in 16^{16}O, 40^{40}Ca, 90^{90}Zr and 208^{208}Pb. The final-state interaction of the ejected proton with the residual nucleus is treated within an optical potential model. The role of electron distortion on the extracted spectroscopic factors is discussed.Comment: 45 pages, 10 encapsulated postscript figures, Revtex, uses epsfig.sty and fancybox.sty, to be published in Physical Review

    Analysis of Meson Exchange and Isobar Currents in (e,e'p) Reactions from O-16

    Get PDF
    An analysis of the effects of meson exchange and isobar currents in exclusive (e,e'p) processes from O-16 under quasi-free kinematics is presented. A model that has probed its feasibility for inclusive quasi-elastic (e,e') processes is considered. Sensitivity to final state interactions between the outgoing proton and the residual nucleus is discussed by comparing the results obtained with phenomenological optical potentials and a continuum nuclear shell-model calculation. The contribution of the meson-exchange and isobar currents to the response functions is evaluated and compared to previous calculations, which differ notably from our results. These two-body contributions cannot solve the puzzle of the simultaneous description of the different responses experimentally separated. Copyright 1999 by The American Physical SocietyComment: 5 pages, plus 3 PS figures. To be published in Phys. Rev. C Updated figure

    Overlap functions in correlation methods and quasifree nucleon knockout from 16^{16}O

    Get PDF
    The cross sections of the (e,eNe,e'N) and (γ,p\gamma,p) reactions on 16^{16}O are calculated, for the transitions to the 1/21/2^{-} ground state and the first 3/23/2^{-} excited state of the residual nucleus, using single-particle overlap functions obtained on the basis of one-body density matrices within different correlation methods. The electron-induced one-nucleon knockout reaction is treated within a nonrelativistic DWIA framework. The theoretical treatment of the (γ,p\gamma,p) reaction includes both contributions of the direct knockout mechanism and of meson-exchange currents. The results are sensitive to details of the different overlap functions. The consistent analysis of the reaction cross sections and the comparison with the experimental data make it possible to study the nucleon--nucleon correlation effects.Comment: 26 pages, LaTeX, 5 Postscript figures, submitted to PR

    Meson exchange currents in electromagnetic one-nucleon emission

    Get PDF
    The role of meson exchange currents (MEC) in electron- and photon-induced one-nucleon emission processes is studied in a nonrelativistic model including correlations and final state interactions. The nuclear current is the sum of a one-body and of a two-body part. The two-body current includes pion seagull, pion-in-flight and the isobar current contributions. Numerical results are presented for the exclusive 16O(e,e'p)15N and 16O(\gamma,p)15N reactions. MEC effects are in general rather small in (e,e'p), while in (\gamma,p) they are always large and important to obtain a consistent description of (e,e'p) and (\gamma,p) data, with the same spectroscopic factors. The calculated (\gamma,p) cross sections are sensitive to short-range correlations at high values of the recoil momentum, where MEC effects are larger and overwhelm the contribution of correlations.Comment: 9 pages, 6 figure

    Meson Exchange Currents in (e,e'p) recoil polarization observables

    Get PDF
    A study of the effects of meson-exchange currents and isobar configurations in A(e,ep)BA(\vec{e},e'\vec{p})B reactions is presented. We use a distorted wave impulse approximation (DWIA) model where final-state interactions are treated through a phenomenological optical potential. The model includes relativistic corrections in the kinematics and in the electromagnetic one- and two-body currents. The full set of polarized response functions is analyzed, as well as the transferred polarization asymmetry. Results are presented for proton knock-out from closed-shell nuclei, for moderate to high momentum transfer.Comment: 44 pages, 18 figures. Added physical arguments explaining the dominance of OB over MEC, and a summary of differences with previous MEC calculations. To be published in PR

    Measurement of Nuclear Transparency for the A(e,e' pi^+) Reaction

    Full text link
    We have measured the nuclear transparency of the A(e,e' pi^+) process in ^{2}H,^{12}C, ^{27}Al, ^{63}Cu and ^{197}Au targets. These measurements were performed at the Jefferson Laboratory over a four momentum transfer squared range Q^2 = 1.1 - 4.7 (GeV/c)^2. The nuclear transparency was extracted as the super-ratio of (σA/σH)(\sigma_A/\sigma_H) from data to a model of pion-electroproduction from nuclei without pi-N final state interactions. The Q^2 and atomic number dependence of the nuclear transparency both show deviations from traditional nuclear physics expectations, and are consistent with calculations that include the quantum chromodynamical phenomenon of color transparency.Comment: 5 pages, 3 figs Changes to figure 2 and 3 (error band updated and theory curves updated

    Restoration of Overlap Functions and Spectroscopic Factors in Nuclei

    Get PDF
    An asymptotic restoration procedure is applied for analyzing bound--state overlap functions, separation energies and single--nucleon spectroscopic factors by means of a model one--body density matrix emerging from the Jastrow correlation method in its lowest order approximation for 16O^{16}O and 40Ca^{40}Ca nuclei . Comparison is made with available experimental data and mean--field and natural orbital representation results.Comment: 5 pages, RevTeX style, to be published in Physical Review

    Measurement of the 12C(e,e'p)11B Two-Body Breakup Reaction at High Missing Momentum Values

    Full text link
    The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. The theoretical calculations agree well with the data up to a missing momentum value of 325 MeV/c and then diverge for larger missing momenta. The extracted distorted momentum distribution is shown to be consistent with previous data and extends the range of available data up to 400 MeV/c.Comment: 12 pages, 1 table and 3 figures for submission to Journal Physics

    Relativistic mean field approximation to the analysis of 16O(e,e'p)15N data at |Q^2|\leq 0.4 (GeV/c)^2

    Full text link
    We use the relativistic distorted wave impulse approximation to analyze data on 16O(e,e'p)15N at |Q^2|\leq 0.4 (GeV/c)^2 that were obtained by different groups and seemed controversial. Results for differential cross-sections, response functions and A_TL asymmetry are discussed and compared to different sets of experimental data for proton knockout from p_{1/2} and p_{3/2} shells in 16O. We compare with a nonrelativistic approach to better identify relativistic effects. The present relativistic approach is found to accommodate most of the discrepancy between data from different groups, smoothing a long standing controversy.Comment: 28 pages, 7 figures (eps). Major revision made. New figures added. To be published in Phys. Rev.
    corecore