60 research outputs found

    Insights from Amphioxus into the Evolution of Vertebrate Cartilage

    Get PDF
    Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm

    An ensemble of structures of Burkholderia pseudomallei 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase

    Get PDF
    An ensemble of crystal structures are reported for 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase from B. pseudomallei. The structures include two vanadate complexes, revealing the structure of a close analogue of the transition state for phosphate transfer

    Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening

    Get PDF
    The first crystal structure is reported of a glutaryl-CoA dehydrogenase in the apo state without flavin adenine dinucleotide cofactor bound. Additional structures with small molecules complexed in the catalytic active site were obtained by fragment-based screening

    Prevalence, duration and risk factors for appendicular osteoarthritis in a UK dog population under primary veterinary care.

    Get PDF
    Osteoarthritis is the most common joint disease diagnosed in veterinary medicine and poses considerable challenges to canine welfare. This study aimed to investigate prevalence, duration and risk factors of appendicular osteoarthritis in dogs under primary veterinary care in the UK. The VetCompassTM programme collects clinical data on dogs attending UK primary-care veterinary practices. The study included all VetCompassTM dogs under veterinary care during 2013. Candidate osteoarthritis cases were identified using multiple search strategies. A random subset was manually evaluated against a case definition. Of 455,557 study dogs, 16,437 candidate osteoarthritis cases were identified; 6104 (37%) were manually checked and 4196 (69% of sample) were confirmed as cases. Additional data on demography, clinical signs, duration and management were extracted for confirmed cases. Estimated annual period prevalence (accounting for subsampling) of appendicular osteoarthritis was 2.5% (CI95: 2.4-2.5%) equating to around 200,000 UK affected dogs annually. Risk factors associated with osteoarthritis diagnosis included breed (e.g. Labrador, Golden Retriever), being insured, being neutered, of higher bodyweight and being older than eight years. Duration calculation trials suggest osteoarthritis affects 11.4% of affected individuals' lifespan, providing further evidence for substantial impact of osteoarthritis on canine welfare at the individual and population level

    Evolution of a Core Gene Network for Skeletogenesis in Chordates

    Get PDF
    The skeleton is one of the most important features for the reconstruction of vertebrate phylogeny but few data are available to understand its molecular origin. In mammals the Runt genes are central regulators of skeletogenesis. Runx2 was shown to be essential for osteoblast differentiation, tooth development, and bone formation. Both Runx2 and Runx3 are essential for chondrocyte maturation. Furthermore, Runx2 directly regulates Indian hedgehog expression, a master coordinator of skeletal development. To clarify the correlation of Runt gene evolution and the emergence of cartilage and bone in vertebrates, we cloned the Runt genes from hagfish as representative of jawless fish (MgRunxA, MgRunxB) and from dogfish as representative of jawed cartilaginous fish (ScRunx1–3). According to our phylogenetic reconstruction the stem species of chordates harboured a single Runt gene and thereafter Runt locus duplications occurred during early vertebrate evolution. All newly isolated Runt genes were expressed in cartilage according to quantitative PCR. In situ hybridisation confirmed high MgRunxA expression in hard cartilage of hagfish. In dogfish ScRunx2 and ScRunx3 were expressed in embryonal cartilage whereas all three Runt genes were detected in teeth and placoid scales. In cephalochordates (lancelets) Runt, Hedgehog and SoxE were strongly expressed in the gill bars and expression of Runt and Hedgehog was found in endo- as well as ectodermal cells. Furthermore we demonstrate that the lancelet Runt protein binds to Runt binding sites in the lancelet Hedgehog promoter and regulates its activity. Together, these results suggest that Runt and Hedgehog were part of a core gene network for cartilage formation, which was already active in the gill bars of the common ancestor of cephalochordates and vertebrates and diversified after Runt duplications had occurred during vertebrate evolution. The similarities in expression patterns of Runt genes support the view that teeth and placoid scales evolved from a homologous developmental module

    A New Mechanistic Scenario for the Origin and Evolution of Vertebrate Cartilage

    Get PDF
    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate “new head”. Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed vertebrates

    The Comparative Osteology of the Petrotympanic Complex (Ear Region) of Extant Baleen Whales (Cetacea: Mysticeti)

    Get PDF
    Anatomical comparisons of the ear region of baleen whales (Mysticeti) are provided through detailed osteological descriptions and high-resolution photographs of the petrotympanic complex (tympanic bulla and petrosal bone) of all extant species of mysticete cetaceans. Salient morphological features are illustrated and identified, including overall shape of the bulla, size of the conical process of the bulla, morphology of the promontorium, and the size and shape of the anterior process of the petrosal. We place our comparative osteological observations into a phylogenetic context in order to initiate an exploration into petrotympanic evolution within Mysticeti.The morphology of the petrotympanic complex is diagnostic for individual species of baleen whale (e.g., sigmoid and conical processes positioned at midline of bulla in Balaenoptera musculus; confluence of fenestra cochleae and perilymphatic foramen in Eschrichtius robustus), and several mysticete clades are united by derived characteristics. Balaenids and neobalaenids share derived features of the bulla, such as a rhomboid shape and a reduced anterior lobe (swelling) in ventral aspect, and eschrichtiids share derived morphologies of the petrosal with balaenopterids, including loss of a medial promontory groove and dorsomedial elongation of the promontorium. Monophyly of Balaenoidea (Balaenidae and Neobalaenidae) and Balaenopteroidea (Balaenopteridae and Eschrichtiidae) was recovered in phylogenetic analyses utilizing data exclusively from the petrotympanic complex.This study fills a major gap in our knowledge of the complex structures of the mysticete petrotympanic complex, which is an important anatomical region for the interpretation of the evolutionary history of mammals. In addition, we introduce a novel body of phylogenetically informative characters from the ear region of mysticetes. Our detailed anatomical descriptions, illustrations, and comparisons provide valuable data for current and future studies on the phylogenetic relationships, evolution, and auditory physiology of mysticetes and other cetaceans throughout Earth's history

    Whole-body regeneration in the colonial tunicate Botrylloides leachii

    Get PDF
    The colonial marine invertebrate Botrylloides leachii belongs to the Tunicata subphylum, the closest invertebrate relatives to the vertebrate group and the only known class of chordates that can undergo whole-body regeneration (WBR). This dramatic developmental process allows a minute isolated fragment of B. leachii’s vascular system, or a colony excised of all adults, to restore a functional animal in as little as 10 days. In addition to this exceptional regenerative capacity, B. leachii can reproduce both sexually, through a tadpole larval stage, and asexually, through palleal budding. Thus, three alternative developmental strategies lead to the establishment of filter-feeding adults. Consequently, B. leachii is particularly well suited for comparative studies on regeneration and should provide novel insights into regenerative processes in chordates.Here, after a short introduction on regeneration, we overview the biology of B. leachii as well as the current state of knowledge on WBR in this species and in related species of tunicates. Finally, we highlight the possible future directions that research might take in the study of WBR, including thoughts on technological approaches that appear most promising in this context. Overall, we provide a synthesis of the current knowledge on WBR in B. leachii to support research in this chordate species

    The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii

    Get PDF

    Geotourism mapping for landscape parks in Poland

    No full text
    In 2014, NRI has issued seven geological and touristic maps of landscape parks. For two of them were also created geological information boards. These maps both form and content refer to previous publications of this type. They are elaborated in GIS applications using new technologies, eg. GPS measurements, orthophotomap, satellite images, digital terrain model. Geological maps contain clearly and attractively redacted explanations, elements of topography, hydrography, ecology and tourism. They promote nature and landscape protection but also inform about the geology of each park
    corecore