40 research outputs found

    Assessment of water quality in the Wiƛniówka River considering circulation of organic matter

    Get PDF
    Variation of hydrochemical conditions, with special reference to adequacy of waters as fish habitats, was traced based on selected hydrochemical parameters obtained during the studies conducted from February 2013 till February 2014 year. The results were compared with earlier studies. The sources of organic pollution were identified, and the effects of biogenic substances on the biomass, as well as the self-purification capability of the river, were assessed. The total suspension exceeded the requirements for waters which are habitats of both salmonid and cyprinid fishes. Compared to the previous years, the load of organic and inorganic matter in the waters of Wiƛniówka River increased; this may have resulted from external inflow, neighbourhood of the hatchery but also, to a small extent, from internal supply. The high availability of nitrogen-(NNH_4+; N-NO_2-, N-NO_3-) and phosphorus-(total phosphorus; P-PO_4 ^3-) based biogenic (substances favoured the biomass production, thus contributing to the increase in organic matter load in the river

    Three birds with one stone: Tidal wetland restoration, carbon sequestration, and enhancing resilience to rising sea levels in the Snohomish River Estuary, Washington

    Get PDF
    Recent attention has focused on exploring the carbon storage and sequestration values of tidal wetlands to mitigate greenhouse gas emissions. Efforts are now underway to develop the tools and refine the science needed to bring carbon markets to bear on tidal wetland restoration activities. Effective restoration not only maximizes carbon storage in former tidal wetlands but also, through the accumulation of organic and mineral matter, enhances these systems’ resilience to rising sea levels. To this end, this project focuses on the Snohomish River estuary of the Puget Sound, Washington, which offers a continuum of diked and un-diked wetlands including seasonal floodplains, open mudflats, mature and tidal forests, and salt marsh habitats. In addition, there is strong restoration potential in a suite of ongoing and proposed projects. We report here on the carbon storage pools, long-term sediment accretion rates (100 years), and estimated rates of carbon storage, derived from sediment cores collected at representative sites within the Snohomish estuary during the spring and summer of 2013. We found that natural wetlands (open to tidal exchange and riverine inputs) were accreting at rates that equaled or exceeded current rates of eustatic sea level rise, while formerly, or currently diked wetlands (closed to such exchanges and inputs) revealed marked evidence of subsidence. Restored sites showed evidence of both high rates of sediment accretion (1.61 cm/year) and carbon storage (352 g C/m2/year)

    Modeling organic carbon accumulation rates and residence times in coastal vegetated ecosystems

    Get PDF
    Coastal vegetated “blue carbon” ecosystems can store large quantities of organic carbon (OC) within their soils; however, the importance of these sinks for climate change mitigation depends on the OC accumulation rate (CAR) and residence time. Here we evaluate how two modeling approaches, a Bayesian age-depth model alone or in combination with a two-pool OC model, aid in our understanding of the time lines of OC within seagrass soils. Fitting these models to data from Posidonia oceanica soil cores, we show that age-depth models provided reasonable CAR estimates but resulted in a 22% higher estimation of OC burial rates when ephemeral rhizosphere OC was not subtracted. This illustrates the need to standardize CAR estimation to match the research target and time frames under consideration. Using a two-pool model in tandem with an age-depth model also yielded reasonable, albeit lower, CAR estimates with lower estimate uncertainty, which increased our ability to detect among-site differences and seascape-level trends. Moreover, the two-pool model provided several other useful soil OC diagnostics, including OC inputs, decay rates, and transit times. At our sites, soil OC decayed quite slowly both within fast cycling (0.028 ± 0.014 yr−1) and slow cycling (0.0007 ± 0.0003 yr−1) soil pools, resulting in OC taking between 146 and 825 yr to transit the soil system. Further, an estimated 85% to 93% of OC inputs enter slow-cycling soil pools, with transit times ranging from 891 to 3,115 yr, substantiating the importance of P. oceanica soils as natural, long-term OC sinks

    Conserving Coastal Wetlands Despite Sea Level Rise

    Get PDF
    Coastal wetlands provide valuable services such as flood protection and fisheries production to a global population that is increasingly concentrated near the coast and dependent on its resources. Many of the world\u27s coastal wetlands suffered significant losses during this century, and the creation of new wetland areas is not keeping pace with recent losses. Some destruction of wetland areas can be expected as a consequence of the continual reworking of the coastal zone by dynamic geologic processes. Yet human activities also play a role, both directly by encroaching on coastal wetlands and indirectly by influencing the hydrologic and geologic processes in the coastal zone

    Global dataset of soil organic carbon in tidal marshes.

    Get PDF
    Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies

    Dynamic response of marshes to perturbations in suspended sediment concentrations and rates of relative sea level rise

    Get PDF
    We have developed an analytical model of salt marsh evolution that captures the dynamic response of marshes to perturbations in suspended sediment concentrations, plant productivity, and the rate of relative sea level rise (RSLR). Sediment\u2010rich and highly productive marshes will approach a new equilibrium state in response to a step change in the rate of RSLR faster than sediment\u2010poor or less productive marshes. Microtidal marshes will respond more quickly to a step change in the rate of RSLR than mesotidal or macrotidal marshes. Marshes are more resilient to a decrease rather than to an increase in the rate of RSLR, and they are more resilient to a decrease rather than to an increase in sediment availability. Moreover, macrotidal marshes are more resilient to changes in the rate of RSLR than their microtidal counterparts. Finally, we find that a marsh\u2019s ability to record sea level fluctuations in its stratigraphy is fundamentally related to a timescale we call TFT, or filling timescale, which is equal to the tidal amplitude divided by the maximum possible accretion rate on the marsh (a function of plant productivity, sediment properties, and availability). Marshes with a short\u2010filling timescale (i.e., marshes with rapid sedimentation or small tidal amplitudes) are best suited to recording high\u2010frequency fluctuations in RSLR, but our model suggests it is unlikely that marshes will be able to record fluctuations occurring over timescales that are shorter than decadal

    Global dataset of soil organic carbon in tidal marshes

    Get PDF
    Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha−1 in the top 30 cm and 231 ± 134 Mg SOC ha−1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies

    Chelon labrosus (Risso, 1827) - the first record from Lake Dąbie (Poland)

    No full text
    We report on the first occurrence of Chelon labrosus in a Polish estuary. One Ch. labrosus was caught with a fyke net in the northern part of Lake Dąbie (Odra estuary) on 14 November 2007. It measured 266.92 mm in overall length and weighed 176.8 g. The fish’s metric and meristic characters, age by scale, condition, sex and maturity stage (Maier’s scale) were determined
    corecore