5 research outputs found

    Фітосанітарний стан зелених насаджень у міському озелененні Луцька

    Get PDF
    The phytosanitary condition of green plantations forming the city dendroflora is determined. As a result of the inventory it has been recorded that 80,0 % of trees and shrubs are characterized by growth which corresponds to the norm generally; they have about 20–25 % of the non-vitable surface. Trees with weakened growth make up 13.1 % of the total number of plants. The planting has smallest number (0,8 %) of dead and completely dead trees, 2,5 % of trees with depressed growth; their increase during current year is almost absent. Trees without depressed growth with a full leaf surface make up only 3,6 %. The distribution of the main phytopathogenic organisms and fungal diseases is investigated. The considerable attention is paid to the diseases of leaves, among which the most characteristic for woody types of the Lutsk city are powdery mildew, marginal necrosis, brown spotty, black spotted leaflets of maple, rust pears, black leafs. Regarding wood-destroying mushrooms it was found a significant distribution of trunks: genuine, false, flaky and sulfur-yellow. The characteristics of the propagation dynamics of Cameraria ohridella Deschka & Dimic and Viscum album L., taking into account the data of previous years, are predicted. According to the research results of the most common pests, the damages of Pulvinaria betulae L., Aphis pomi Deg., Myzus cerasi F., Disaphis reaumuri Mordv., Drepanosiphum platanoidis Schrank, Eucalipterus tiliae L are specified.Визначено фітосанітарний стан зелених насаджень, які формують дендрофлору міста. У результаті інвентаризації зафіксовано, що 80,0 % дерев та кущів характеризуються ростом, котрий загалом відповідає нормі, і мають близько 20–25 % нежиттєздатної поверхні. Дерева з ослабленим ростом становлять 13,1 % від загальної кількості рослин. В озелененні міста найменша кількість (0,8 %) мертвих та повністю всохлих дерев, а 2,5 % – із пригніченим ростом, приріст поточного року яких практично відсутній. Дерева без пригніченого росту з повноцінною листовою поверхнею становлять лише 3,6 %. Досліджено поширення основних фітопатогенних організмів та грибкових захворювань.Значну увагу приділено хворобам листків, серед яких найбільш притаманні для деревних видів міста Луцька такі, як борошниста роса, крайовий некроз, бура плямистість, чорна плямистість листків клена, іржа груші, чернь листків. Із дереворуйнівних грибів виявлено значне поширення трутовиків – справжнього, несправжнього, лускатого та сірчано-жовтого.Наведено характеристику динаміки поширення Cameraria ohridella Deschka & Dimic та Viscum album L., ураховуючи дані попередніх років.Відповідно до результатів дослідження найбільш поширених ентомошкідників, виокремлено ушкодження Pulvinaria betulae L., Aphis pomi Deg., Myzus cerasi F., Disaphis reaumuri Mordv., Drepanosiphum platanoidis Schrank, Eucalipterus tiliae L

    A new family of bacterial ribosome hibernation factors

    Get PDF
    To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage 1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery 3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt Iniciación grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013–2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.
    corecore