334 research outputs found
In vivo imaging of trypanosome-brain interactions and development of a rapid screening test for drugs against CNS stage trypanosomiasis.
HUMAN AFRICAN TRYPANOSOMIASIS (HAT) MANIFESTS IN TWO STAGES OF DISEASE: firstly, haemolymphatic, and secondly, an encephalitic phase involving the central nervous system (CNS). New drugs to treat the second-stage disease are urgently needed, yet testing of novel drug candidates is a slow process because the established animal model relies on detecting parasitemia in the blood as late as 180 days after treatment. To expedite compound screening, we have modified the GVR35 strain of Trypanosoma brucei brucei to express luciferase, and have monitored parasite distribution in infected mice following treatment with trypanocidal compounds using serial, non-invasive, bioluminescence imaging. Parasites were detected in the brains of infected mice following treatment with diminazene, a drug which cures stage 1 but not stage 2 disease. Intravital multi-photon microscopy revealed that trypanosomes enter the brain meninges as early as day 5 post-infection but can be killed by diminazene, whereas those that cross the blood-brain barrier and enter the parenchyma by day 21 survived treatment and later caused bloodstream recrudescence. In contrast, all bioluminescent parasites were permanently eliminated by treatment with melarsoprol and DB829, compounds known to cure stage 2 disease. We show that this use of imaging reduces by two thirds the time taken to assess drug efficacy and provides a dual-modal imaging platform for monitoring trypanosome infection in different areas of the brain
Field Blue Stragglers and Related Mass Transfer Issues
This chapter contains my impressions and perspectives about the current state
of knowledge about field blue stragglers (FBS) stars, drawn from an extensive
literature that I searched. I conclude my review of issues that attend FBS and
mass transfer, by a brief enumeration of a few mildly disquieting observational
facts.Comment: Chapter 4, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
Combining biomarker and bulk compositional gradient analysis to assess reservoir connectivity
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Organic Geochemistry 41 (2010): 812-821, doi:10.1016/j.orggeochem.2010.05.003.Hydraulic connectivity of petroleum reservoirs represents one of the biggest uncertainties for
both oil production and petroleum system studies. Here, a geochemical analysis involving bulk and
detailed measures of crude oil composition is shown to constrain connectivity more tightly than is
possible with conventional methods. Three crude oils collected from different depths in a single well
exhibit large gradients in viscosity, density, and asphaltene content. Crude oil samples are collected
with a wireline sampling tool providing samples from well‐defined locations and relatively free of
contamination by drilling fluids; the known provenance of these samples minimizes uncertainties in the
subsequent analysis. The detailed chemical composition of almost the entire crude oil is determined by
use of comprehensive two‐dimensional gas chromatography (GC×GC) to interrogate the nonpolar
fraction and negative ion electrospray ionization Fourier transform ion cyclotron resonance mass
spectrometry (ESI FT‐ICR MS) to interrogate the polar fraction. The simultaneous presence of 25‐
norhopanes and mildly altered normal and isoprenoid alkanes is detected, suggesting that the reservoir
has experienced multiple charges and contains a mixture of oils biodegraded to different extents. The
gradient in asphaltene concentration is explained by an equilibrium model considering only gravitational
segregation of asphaltene nanoaggregates; this grading can be responsible for the observed variation in
viscosity. Combining these analyses yields a consistent picture of a connected reservoir in which the
observed viscosity variation originates from gravitational segregation of asphaltene nanoaggregates in a
crude oil with high asphaltene concentration resulting from multiple charges, including one charge that
suffered severe biodegradation. Observation of these gradients having appropriate magnitudes
suggests good reservoir connectivity with greater confidence than is possible with traditional techniques
alone.The mass spectrometry work was
supported by the NSF Division of Materials Research through DMR‐06‐54118, and the State of Florida
A novel design process for selection of attributes for inclusion in discrete choice experiments:Case study exploring variation in clinical decision-making about thrombolysis in the treatment of acute ischaemic stroke
On-line structured prioritisation exercise (SPE). Full survey used to collect data. (DOCX 42Â kb
LI-RADS: A Conceptual and Historical Review from Its Beginning to Its Recent Integration into AASLD Clinical Practice Guidance
The Liver Imaging Reporting and Data System (LI-RADS®) is a comprehensive system for standardizing the terminology, technique, interpretation, reporting, and data collection of liver observations in individuals at high risk for hepatocellular carcinoma (HCC). LI-RADS is supported and endorsed by the American College of Radiology (ACR). Upon its initial release in 2011, LI-RADS applied only to liver observations identified at CT or MRI. It has since been refined and expanded over multiple updates to now also address ultrasound-based surveillance, contrast-enhanced ultrasound for HCC diagnosis, and CT/MRI for assessing treatment response after locoregional therapy. The LI-RADS 2018 version was integrated into the HCC diagnosis, staging, and management practice guidance of the American Association for the Study of Liver Diseases (AASLD). This article reviews the major LI-RADS updates since its 2011 inception and provides an overview of the currently published LI-RADS algorithms
Regulation of skeletal muscle oxidative capacity and insulin signaling by the Mitochondrial Rhomboid Protease PARL
Type 2 diabetes mellitus (T2DM) and aging are characterized by insulin resistance and impaired mitochondrial energetics. In lower organisms, remodeling by the protease pcp1 (PARL ortholog) maintains the function and lifecycle of mitochondria. We examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. PARL mRNA and mitochondrial mass were both reduced in elderly subjects and in subjects with T2DM. Muscle knockdown of PARL in mice resulted in malformed mitochondrial cristae, lower mitochondrial content, decreased PGC1α protein levels, and impaired insulin signaling. Suppression of PARL protein in healthy myotubes lowered mitochondrial mass and insulin-stimulated glycogen synthesis and increased reactive oxygen species production. We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM.<br /
An Active Site Aromatic Triad in Escherichia coli DNA Pol IV Coordinates Cell Survival and Mutagenesis in Different DNA Damaging Agents
DinB (DNA Pol IV) is a translesion (TLS) DNA polymerase, which inserts a
nucleotide opposite an otherwise replication-stalling
N2-dG lesion in vitro, and
confers resistance to nitrofurazone (NFZ), a compound that forms these lesions
in vivo. DinB is also known to be part of the cellular
response to alkylation DNA damage. Yet it is not known if DinB active site
residues, in addition to aminoacids involved in DNA synthesis, are critical in
alkylation lesion bypass. It is also unclear which active site aminoacids, if
any, might modulate DinB's bypass fidelity of distinct lesions. Here we
report that along with the classical catalytic residues, an active site
“aromatic triad”, namely residues F12, F13, and Y79, is critical for
cell survival in the presence of the alkylating agent methyl methanesulfonate
(MMS). Strains expressing dinB alleles with single point
mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains
show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in
addition to its role in TLS, modulates DinB's accuracy in bypassing
distinct lesions. The high bypass fidelity of prevalent alkylation lesions is
evident even when the DinB active site performs error-prone NFZ-induced lesion
bypass. The analyses carried out with the active site aromatic triad suggest
that the DinB active site residues are poised to proficiently bypass distinctive
DNA lesions, yet they are also malleable so that the accuracy of the bypass is
lesion-dependent
Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines
<p>Abstract</p> <p>Background</p> <p>The literature suggests a beneficial effect of motor imagery (MI) if combined with physical practice, but detailed descriptions of MI training session (MITS) elements and temporal parameters are lacking. The aim of this review was to identify the characteristics of a successful MITS and compare these for different disciplines, MI session types, task focus, age, gender and MI modification during intervention.</p> <p>Methods</p> <p>An extended systematic literature search using 24 databases was performed for five disciplines: Education, Medicine, Music, Psychology and Sports. References that described an MI intervention that focused on motor skills, performance or strength improvement were included. Information describing 17 MITS elements was extracted based on the PETTLEP (physical, environment, timing, task, learning, emotion, perspective) approach. Seven elements describing the MITS temporal parameters were calculated: study duration, intervention duration, MITS duration, total MITS count, MITS per week, MI trials per MITS and total MI training time.</p> <p>Results</p> <p>Both independent reviewers found 96% congruity, which was tested on a random sample of 20% of all references. After selection, 133 studies reporting 141 MI interventions were included. The locations of the MITS and position of the participants during MI were task-specific. Participants received acoustic detailed MI instructions, which were mostly standardised and live. During MI practice, participants kept their eyes closed. MI training was performed from an internal perspective with a kinaesthetic mode. Changes in MI content, duration and dosage were reported in 31 MI interventions. Familiarisation sessions before the start of the MI intervention were mentioned in 17 reports. MI interventions focused with decreasing relevance on motor-, cognitive- and strength-focused tasks. Average study intervention lasted 34 days, with participants practicing MI on average three times per week for 17 minutes, with 34 MI trials. Average total MI time was 178 minutes including 13 MITS. Reporting rate varied between 25.5% and 95.5%.</p> <p>Conclusions</p> <p>MITS elements of successful interventions were individual, supervised and non-directed sessions, added after physical practice. Successful design characteristics were dominant in the Psychology literature, in interventions focusing on motor and strength-related tasks, in interventions with participants aged 20 to 29 years old, and in MI interventions including participants of both genders. Systematic searching of the MI literature was constrained by the lack of a defined MeSH term.</p
- …